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Polygenic scores (or genetic risk scores) quantify the aggregate of small effects from many common genetic loci that have been
associated with a trait through genome-wide association. Polygenic scores were first used successfully in schizophrenia and have
since been applied to multiple phenotypes including multiple sclerosis, rheumatoid arthritis, and height. Because human height
is an easily-measured and complex polygenic trait, polygenic height scores provide exciting insights into the predictability of
aggregate common variant effect on the phenotype. Shawn Bradley is an extremely tall former professional basketball player
from Brigham Young University and the National Basketball Association (NBA), measuring 2.29 meters (7′6″, 99.99999th
percentile for height) tall, with no known medical conditions. Here, we present a case where a rare combination of common
SNPs in one individual results in an extremely high polygenic height score that is correlated with an extreme phenotype. While
polygenic scores are not clinically significant in the average case, our findings suggest that for extreme phenotypes, polygenic
scores may be more successful for the prediction of individuals.

1. Introduction

Polygenic, or genetic risk, scores are aggregate measurements
of the effects of multiple common genetic loci that are associ-
ated with a trait. First used in schizophrenia [1], they have
been applied to many complex traits such as multiple sclero-
sis [2], rheumatoid arthritis [3], and cardiovascular risk [4].
However, polygenic scores are not generally expected to be
clinical predictors of an individual’s phenotype. For example,
Machiela et al. observed that the calculated AUC for the

prediction of breast cancer from the polygenic score did not
exceed 53%, which suggests that more validated variants
(increased sample size) are necessary for a better prediction
or that other factors besides common variants account for a
large part of the disease phenotype [5]. Similarly, Evans
et al. found that while adding genome-wide variant informa-
tion can slightly improve prediction accuracy, it is unlikely to
be used for the prediction of individual phenotypes until
larger datasets can improve the number of validated associ-
ated variants [6].
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Most phenotypes (e.g., height, Alzheimer’s disease,
Parkinson’s disease, etc.) are complex and polygenic, and
our understanding of the underlying biology is limited
because of high data dimensionality and small sample sizes.
Approximately 80% of adult height variation has been
attributed to genetic factors [7–10], and common SNPs are
believed to account for approximately 50% of that variation
[11, 12]. The Genetic Investigation of ANthropometric
Traits (GIANT) consortium recently identified 697 SNPs
across 423 loci that explain 20% of adult height heritability
and further demonstrated that the 2000, 3700, and 9500
most significantly associated SNPs explained 21%, 24%,
and 29% of height variation [10], respectively. Using 160 of
these SNPs, which explain 10% of variation in height as
reported by the GIANT consortium, Chan et al. observed
that weighted polygenic allele scores were as predictive as
expected in the extreme height phenotypes [13]. This con-
clusion was also validated by Liu et al., who reported an
AUC of 0.75 for a weighted allele score prediction for 180
SNPs on tall stature [14].

Shawn Bradley is an extremely tall former professional
basketball player from Brigham Young University and the
National Basketball Association (NBA), measuring 2.29m
(7′ 6″) tall (Figure 1) and has no known medical conditions.
Mr. Bradley’s height is 8.6 standard deviations (standard
deviation= 6.05 cm) above the average height for US males
(176.8 cm), putting him in the 99.99999th percentile [15].
While height is known to be polygenic, exceptional outliers
for height and other phenotypes remain intriguing because
their rarity may present exciting genetic insights. Possible
explanations for their rare height may include a combination
of rare genetic variants, environmental factors (e.g., diet) and
an extremely rare combination of common SNPs. Here, we
present evidence of a relationship between common SNPs
and an extreme polygenic phenotype and demonstrate that
in Mr. Bradley’s specific case, the polygenic score predicts
his height ranking as expected.

2. Materials and Methods

2.1. Sample Collection and Sequencing. The Cache County
Study on Memory Health and Aging was initiated in 1994
[16] and consists of 5092 participants representing approxi-
mately 90% of the Cache County population aged 65 and
older in 1994. Specific details about data collection, obtaining
consent, and phenotyping individuals in the Cache County
population were reported previously [16], and other addi-
tional information on this dataset can be found in previous
reports [16, 17].

Whole genome sequences (WGS) from 809 individ-
uals (432 males, 354 females, and 23 unknown) were
obtained from the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) database (http://adni.loni.usc.edu). ADNI is a
large collaboration from several academic and private insti-
tutions, and subjects have been recruited from over 50 sites
across the US and Canada. Currently, over 1500 adults (ages
55 to 90) participate, consisting of cognitively normal older
individuals, people with early or late MCI, and people with

early stage Alzheimer’s disease. For up-to-date information,
see http://www.adni-info.org.

We combined WGS from ADNI with WGS for 211 indi-
viduals (82 males and 129 females) from the Cache County
study. All samples were sequenced using the Illumina HiSeq
technology at an average of 30x coverage. We sequenced Mr.
Bradley’s exome using the Ion Torrent and the Ion Ampliseq
Exome Kit at an average coverage of 30x. Sequence data
from all studies were mapped to the human reference
genome, version GrCh37 with BWA (Burrows-Wheeler
Aligner) [18]. We further genotyped Mr. Bradley using the
Illumina HumanOmniExpress chip and imputed additional

Figure 1: Shawn Bradley is 2.29m (7′ 6″) tall with no known
medical conditions. Mr. Bradley played basketball for Brigham
Young University from 1990 to 1991. He played in the National
Basketball Association from 1993–2005. Photo courtesy of BYU
photography.
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SNPs using Impute2 [19] and the 1000G reference panel [20].
Subsequently, we filtered imputed SNPs with low informa-
tion (info <0.4). Mr. Bradley and all individuals in the
ADNI and Cache County cohorts are of Northern European
ancestry [21].

SNP data from the Alzheimer’s Disease Genetics Consor-
tium (ADGC) were used to examine patterns of linkage dis-
equilibrium. The ADGC consists of 32 studies collected
over two phases that include 16,000 cases and 17,000 con-
trols. All subjects were self-reported as being of European
American ancestry. More information about this dataset
can be found in the study of Naj et al. [22] and the ADGC
data preparation description [23].

2.2. Analyses. The GIANT Consortium reported 22,539
genome-wide significant SNPs associated with human
height. We extracted these SNPs from the ADGC data and
identified unique tag SNPs within each LD block to (1)
estimate the number of unique signals in the GIANT data
and (2) prevent counting the same signal more than once.
We identified tag SNPs using default settings in Haploview
[24] for each chromosome individually (r2 = 0 8). We then
extracted as many of the remaining SNPs as possible from
Mr. Bradley’s data, the ADNI samples, and Cache County
samples. We calculated an additive polygenic height score
[25] for each individual and their respective ranks in the
distribution of height scores. We also calculated the max-
imum possible score across the selected SNPs.

To estimate the number of SNPs needed to elevate
Mr. Bradley’s height score to the highest in the distribution,
we performed a random selection of SNPs (bootstrap) at
various SNP-set sizes ranging from 100 to 2000 SNPs,
recalculating Mr. Bradley’s height score and rank each
time. We performed 1 million replicates for each SNP-set
size and measured the range (minimum and maximum),
first and third quartiles (25th and 75th percentiles), and
the median for each SNP-set size.

We also explored the difference in height scores between
the observed distribution of height scores amongst the 1020
individuals from ADNI and Cache County compared to the
null distribution, assuming no evolutionary constraints. We
simulated genotypes and height scores across the extracted
common SNPs for 20 billion individuals. Specifically, for
each SNP, we randomly chose one of three possible geno-
types and calculated the simulated individual’s height score.

Understanding whether Mr. Bradley’s height is attributed
to an increased proportion of heterozygous or homozygous
genotypes associated with increased height could shed addi-
tional light on whether the SNP effects are additive or nonad-
ditive (i.e., being homozygous has a greater effect than the
sum). We tested for a difference between Mr. Bradley’s geno-
type distribution and the average ADNI and Cache County
genotype distribution using a goodness-of-fit test. Alleles
with a positive effect size are associated with increased height,
while alleles with a negative effect size are associated with
decreased height. A significant difference that could indicate
the effects on height are nonadditive, though more data from
extremely tall individuals would be necessary to provide
definitive evidence.

We also tested whether height scores were correlated
with actual height in 407 individuals from the ADNI and
Cache County datasets for each individual with both height
and genetic data available. We tested for a correlation
between the two using Pearson’s product moment correla-
tion coefficient, which is calculated using the R statistical
package [26].

3. Results and Discussion

We tested whether a simple polygenic height score, calcu-
lated using SNPs that were statistically associated with
human height in the GIANT consortium data [10], could
accurately predict Mr. Bradley’s height rank amongst 1020
individuals of Northern European descent. We used Haplo-
view to identify tag SNPs for each LD block across the
22,539 GIANT SNPs to avoid counting a single signal multi-
ple times and to estimate how many independent signals
exist in the GIANT SNPs. Using the Alzheimer’s Disease
Genetics Consortium (ADGC) [22, 23] data with over
30,000 individuals, we identified 3428 unique signals, sug-
gesting that most of the GIANT SNPs tag redundant effects.
This is consistent with the GIANT result that most of the
adult height variability explained by their SNPs is captured
in the top 697 SNPs identified. After extracting genome-
wide significant GIANT SNPs from Mr. Bradley’s exome
and SNP data and using only a single tag SNP within each
linkage disequilibrium (LD) block, 2910 SNPs (2491 geno-
typed, 419 imputed, Supplementary Table 1) remained and
were included in the analysis. These represent 2910 of the
3428 LD blocks identified across the 22,539 significant
GIANT SNPs using the ADGC dataset. Each allele included
in this study is estimated by the GIANT consortium to affect
an individual’s height by −0.14 to 0.19 millimeters.

We calculated height scores weighted by effect size (see
Supplementary Table 1 for effect betas) for Mr. Bradley and
1020 individuals from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) and the Cache County Study on Mem-
ory Health and Aging. Because Mr. Bradley’s height is 8.6
standard deviations above the average height of a male in
the US, it is expected that his height score would be much
higher than the average of the 1020 individuals for whom
height scores were calculated. Mr. Bradley’s height score
(10.32), calculated using the 2910 SNPs, was ranked highest,
while the next highest was 7.43 (Figure 2). The mean height
score within the ADNI and Cache County data was 0.98 with
a standard deviation of 2.22, making Mr. Bradley’s height
score 4.2 standard deviations above the mean, as expected.

In order to determine how few SNPs could be used for
Mr. Bradley’s height score to rank highest when compared
to the ADNI and Cache County population data, we created
subsets of SNPs randomly from the 2910 available SNPs and
then calculated height scores for all 1020 individuals as well
as Mr. Bradley. We then ranked the resulting height scores
and recorded Mr. Bradley’s percentile (Table 1). This proce-
dure was replicated 1 million times for each SNP subset size.
Choosing a subset of 100 SNPs randomly 1 million times,
Mr. Bradley’s height scores calculated from the SNP subsets
range from the lowest to the highest when compared to the
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ADNI and Cache County SNP subset height scores. His
median height percentile settles at 96.9. Using a subset of
250 SNPs across 1 million iterations, Mr. Bradley’s median
height percentile rises to 99.6 with his minimum height per-
centile at 20.4 and his maximum ranking highest. By using
750 SNPs, Mr. Bradley’s Q1 height rank is the top of the dis-
tribution, meaning that at least 75% of the time, his height
score was ranked highest in the distribution. His lowest per-
centile using 750 SNPs was 78.8. Randomly selecting 1500 of
the 2910 SNPs, Mr. Bradley’s lowest rank was in the 99.2 per-
centile (1017 of 1021).

We also explored the difference in height scores between
the observed distribution of height scores amongst the 1020
individuals from ADNI and Cache County when compared
to the null distribution, based on 20 billion simulated indi-
viduals created from ADNI and Cache County genotypes,
assuming no evolutionary constraints. The mean simulated

height score (−0.30) was 1.28mm lower than the observed
height score mean (0.98). The maximum simulated height
score (8.37) was 1.95mm lower than Mr. Bradley’s (10.32).

We tested whether Mr. Bradley’s extreme height may be
caused by an increased proportion of heterozygous or
homozygous genotypes using a goodness-of-fit test (p =
1 28 × 10−24). Mr. Bradley has an increased proportion of
homozygous genotypes for alleles with a positive effect
(Table 2). He has nearly identical numbers of heterozygous
genotypes for positive (associated with increased height)
and negative (associated with decreased height) effect sizes
with 621 and 634, respectively. The additive effects on his
score for the positive and negative heterozygous genotypes
are approximately equal and opposite at 15.12 and −15.27,
respectively, summing to −0.17. There is a large difference,
however, when comparing the homozygous genotypes for
alleles with a positive and negative effect. Mr. Bradley has
465 genotypes where he is homozygous for GIANT alleles
with a positive effect and only 267 genotypes where he is
homozygous for GIANT alleles with a negative effect. The
additive effects where Mr. Bradley is homozygous for posi-
tive and negative alleles are 25.89 and −15.42, respectively.
The sum of all four scores equates to his height score of
10.32. Based on these data, Mr. Bradley’s height score rank
is largely attributed to an excess of 198 positive-effect
homozygous genotypes.

Using available height data from the ADNI and Cache
County data, we tested whether the height scores calculated
using the 2910 SNPs were correlated with the self-reported
heights (at age 18) for the 407 individuals for which we have
both height and genetic data. We failed to detect significant
correlation between the two (correlation coefficient = 0.06,
p = 0 25; Figure 3). This is consistent with the findings of
the GIANT consortium. With a population of 1914 individ-
uals, Wood et al. found a predictive r2 = 0 14 for 697 SNPs
(20% variation explained) [10]. It is expected that this r2

should be stronger than the correlation coefficient in our
findings because of our smaller population size of 407 indi-
viduals of the ADNI and Cache County individuals as well
as the fact that the GIANT consortium identified the 697
SNPs used for prediction directly from their population of
1914 individuals.

4. Conclusions

While research has shown that height is a polygenic trait
heavily influenced by common SNPs [7–12], a polygenic
score that quantifies common SNP effect is generally insuffi-
cient for successful individual phenotype prediction. We
demonstrate that in the case of Mr. Bradley, a rare combina-
tion of common SNPs corresponds to an extremely high
polygenic score that predicts an extreme phenotype. Because
Mr. Bradley is an outlier, studying his genetic makeup pro-
vides a unique context to understand the complex nature of
human height. Using a simple polygenic model across
approximately 2000 SNPs, we accurately predicted Mr. Brad-
ley’s height rank amongst a population of 1020 individuals.

The accurate prediction of tall individuals based on
polygenic score has been found by both Chan et al. [13]

Table 1: Mr. Bradley’s height score percentiles when compared to
the population data for random subsets of SNPs.

Set size 100 250 500 750 1000 1250 1500 1750 2000

Min 0 20.4 54.4 78.8 94.3 97.1 99.2 99.6 99.6

Q1 89.6 98.2 99.8 ∗ ∗ ∗ ∗ ∗ ∗

Median 96.9 99.6 ∗ ∗ ∗ ∗ ∗ ∗ ∗

Q3 99.3 99.9 ∗ ∗ ∗ ∗ ∗ ∗ ∗

Max ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Table 1 Shawn Bradley’s height score quickly stabilizes at the highest rank as
SNP-set size increases. Data are represented in percentiles. The “∗” indicates
that his score was the highest.
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Figure 2: Height score distribution calculated using the 2910 SNPs.
Mr. Bradley’s height score (10.32, indicated by the arrow) ranked
highest when compared to the 1020 individuals from ADNI and
Cache County, while the next highest was 7.43. The mean height
score within the ADNI and Cache County data was 0.98 with a
standard deviation of 2.22, making Mr. Bradley’s height score 4.2
standard deviations above the mean.
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and Liu et al. [14], confirming that in the case of an
extremely tall phenotype, such as Mr. Bradley’s, polygenic
scores can predict height rank. While these studies used a
population of tall individuals to confirm their findings, we
provide a validation of one individual polygenic height score
rather than a distribution.

Mr. Bradley’s height score—like his actual height—was
an extreme outlier (4.2 standard deviations above the mean).
This appears to be driven by an increased proportion of
homozygous genotypes for SNPs associated with increased
height when compared to the average ADNI and Cache
County genotype values. Despite this, his height score only
predicted him to be 10.32mm taller than average. This sug-
gests that while Mr. Bradley’s extreme polygenic score could
accurately rank his height amongst 1020 individuals, it does
not accurately predict his actual height measurement, dem-
onstrating that there are significant factors unaccounted
for. Similarly, and as expected, this model was not able to
accurately predict actual heights among the 407 ADNI and
Cache County individuals for which we had both height
and genetic data. These results as well as Mr. Bradley’s
predicted height (10.32mm taller than average) suggest
that other factors such as environmental factors [27], non-
additive individual loci [28], and both epistasis (gene by
gene interactions) and gene by environment interactions
[29] play a significant role in determining actual height

measurement. Recent studies of heritability in height and
other complex traits suggest significant contributions of
nonadditive factors [30, 31].

Height is a complex trait that may serve as an effective
phenotype model for other complex traits and diseases
because it is a noninvasive and easily-measured phenotype
to study. By developing new models and studies to better
understand all genetic contributors to an individual’s
height, researchers will be able to apply the methods to
other complex data.
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Figure 3: Correlation between height scores and self-reported
height in the ADNI and Cache County individuals. We plotted
height scores and self-reported heights (at age 18) for individuals in
the ADNI and Cache County datasets and found poor correlation
between the two. We also calculated the Pearson product moment
correlation coefficient (correlation coefficient = 0.06, p = 0 25).
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