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WHAT CONDITIONAL PROBABILITY COULD NOT BE

ABSTRACT. Kolmogorov’s axiomatization of probability includes the familiar ratio
formula for conditional probability:

(RATIO) P(A | B) = P(A ∩ B)

P (B)
(P (B) > 0).

Call this the ratio analysis of conditional probability. It has become so entrenched that it is
often referred to as the definition of conditional probability. I argue that it is not even an ad-
equate analysis of that concept. I prove what I call the Four Horn theorem, concluding that
every probability assignment has uncountably many ‘trouble spots’. Trouble spots come in
four varieties: assignments of zero to genuine possibilities; assignments of infinitesimals to
such possibilities; vague assignments to such possibilities; and no assignment whatsoever
to such possibilities. Each sort of trouble spot can create serious problems for the ratio
analysis. I marshal many examples from scientific and philosophical practice against the
ratio analysis. I conclude more positively: we should reverse the traditional direction of
analysis. Conditional probability should be taken as the primitive notion, and unconditional
probability should be analyzed in terms of it.

“I’d probably be famous now
If I wasn’t such a good waitress.”
Jane Siberry, “Waitress”

Over three hundred years ago, Fermat and Pascal began the enterprise of
systematizing our pre-mathematical, pre-philosophical concept of prob-
ability. Orthodoxy has it that this task was completed in 1933, when
Kolmogorov provided his axiomatization. In the process, he systemat-
ized another pre-theoretical concept: conditional probability. He identified
conditional probability with a certain ratio of unconditional probabilities,
according to the formula:

(RATIO) P(A | B) = P(A ∩ B)

P (B)
(P (B) > 0).

I will call this the ratio analysis of conditional probability.1 It has become
so entrenched that we seem to have forgotten that it is an analysis. My
main purposes in this paper are to cast doubt on its adequacy, and to argue
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that conditional probability should be taken as the fundamental notion in
probability theory.

1. THE RATIO IS AN ANALYSIS, NOT A DEFINITION, OF CONDITIONAL

PROBABILITY

What I have just said may strike you as absurd. You may say that condi-
tional probability is just a technical term that is defined by this formula. If
so, you are in good company. For example, Jackson (1987, p. 12) writes:
“it is important to take the conditional probability of consequent given
antecedent to be defined as the probability of the conjunction of the ante-
cedent and the consequent divided by the probability of the antecedent”.
(The emphasis is his.) Skyrms (1980, p. 156; 2000, p. 119) and Earman
(1992, p. 36) similarly speak of (RATIO) as the “definition” of conditional
probability, just to mention two other prominent authors, among many. It is
quite understandable that they speak this way – it is part of the orthodoxy,
after all. And it only underscores, to my mind, the extent to which the ratio
analysis has become dogma.

To be sure, if “the conditional probability of A given B” were a purely
technical notion, then Jackson, Skyrms, Earman, etc. would doubtless be
right.2 There is nothing problematic about introducing the symbol ‘|’ into
the language of the probability calculus, and defining it in terms of the ratio
formula. You can even intone the words “the conditional probability of A

given B” when reading ‘P(A |B)’ out loud, if you insist. If these words
are not loaded with philosophical and commonsensical associations, then
this is no more contentious than saying “the probability of A slash B”, and
taking that as convenient shorthand for the ratio.

But the words are loaded. They are tinged with associations with mod-
els of learning, rational belief revision and decision-making, with analyses
of confirmation, causal dependence, the semantics of conditionals, and so
on. Jackson goes on to deploy intuitions about conditional probabilities
in his defense of Adams’ Thesis that the assertability of the indicative
conditional A → B goes by the conditional probability of B, given A. For
example, he writes: “Take a conditional which is highly assertible, say, ‘If
unemployment drops sharply, the unions will be pleased’; it will invariably
be one whose consequent is highly probable given the antecedent. And,
indeed, the probability that the unions will be pleased given unemploy-
ment drops sharply is very high” (12). Likewise, Skyrms goes on to deploy
intuitions about conditional probabilities in his defense of his account of
laws as resilient generalizations; and Earman goes on to deploy intuitions
about conditional probabilities in his defense of the Bayesian analysis of
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confirmation. They are clearly appealing to some commonsensical notion
(albeit refined by philosophical reflection) rather than to something that is
merely stipulatively defined.

After all, we had the concept of conditional probability long before we
donned our philosopher’s or mathematician’s caps. In ordinary language,
conditional probability statements can be made using locutions of the form
“it’s likely that p, given q”, “it’s improbable that r, if s”, and variations on
these. In The Piano Man, Billy Joel sings, “I’m sure that I could be a movie
star, if I could get out of this place”: his probability for becoming a movie
star is high, not unconditionally, but conditionally on his getting out of this
place. And so forth. Conditional probability is not just a technical notion
such as ‘zero-sum game’ or ‘categorical imperative’ or ‘Turing comput-
ability’. Rather, it is a familiar concept, like ‘game’, or ‘moral duty’, and
I daresay more familiar than ‘computability’. It is there to be analyzed,
if possible. (If it is not possible, then it follows immediately that the ratio
does not provide an adequate analysis of it.) Our choice of words in reading
P(A |B) as ’the probability of A, given B’ is not so innocent after all. And
far from being a stipulative definition of that concept, I will argue that the
ratio formula is not even an adequate analysis of it.3

In the sequel, I will follow convention in using the notation ‘P(A |B)’
as shorthand for the ratio P(A ∩ B)/P (B). However, I want you to res-
ist the further convention of reading it as ‘the probability of A given B’.
When I want to speak of the conditional probability of A, given B, while
remaining neutral as to how this might be analyzed (if at all), I will simply
write ‘P (A, given B)’. I will call B ‘the condition’.

My strategy will be as follows. After some stage-setting in Section
2, I will prove in Section 3 what I call the Four Horn theorem. Its up-
shot is that every probability assignment has uncountably many ‘trouble
spots’. Trouble spots come in four varieties: assignments of zero to genu-
ine possibilities; assignments of infinitesimals to such possibilities; vague
assignments to such possibilities; and no assignment whatsoever to such
possibilities. The next four sections show how each sort of trouble spot
can create serious problems for the ratio analysis. Section 4 rehearses, then
gives a new gloss on, an old problem: that the analysis is mute whenever
the condition has probability zero, and yet conditional probabilities may
nevertheless be well defined in such cases. Section 5 discusses problems
for infinitesimal assignments to the unconditional probabilities that figure
in (RATIO). Section 6 shows that the analysis cannot respect the fact that
various conditional probabilities are sharp even when the corresponding
unconditional probabilities are vague. Section 7 argues that various condi-
tional probabilities are defined even when the corresponding unconditional
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probabilities are undefined, and indeed cannot be defined. In Section 8, I
canvass many instances from actual scientific and philosophical practice.
The dogma has it that the ratio is an adequate analysis of ‘the probability
of A, given B’, irrespective of the interpretation of probability itself. I give
arguments against the ratio analysis for both subjectivist and objectivist
construals of probability.

If (RATIO) fails as an analysis of conditional probability, how can
we explain its undoubted utility? In Section 9, I argue that it provides a
constraint on conditional probability: when P(A ∩ B) and P(B) are both
sharply defined, and P(B) is non-zero, the probability of A given B is
constrained to be their ratio. In the cases that I discuss, these conditions
are not met, so there is no constraining to be done by the ratio. I conclude
more positively in Section 10: we should reverse the traditional direction of
analysis. Conditional probability should be taken as the primitive notion,
and unconditional probability should be analyzed in terms of it.

2. BACKGROUND

There is some philosophical and technical background that I will be
assuming in my arguments.

2.1. Subjective/Objective Probability

I assume that probability comes in at least two varieties: subjective and
objective. I will stay neutral as to how exactly these should be understood;
suffice to say that my examples will include putatively paradigm cases
of each. The following characterizations, though not fully fleshed-out and
in some ways problematic (topics for other occasions), will be more than
adequate for my purposes here:4

Subjective probability: Probability is interpreted as the degree of belief,
or credence, of a rational agent. Let the agent be you, for example. There
are various proposals for attributing a single probability function P to you.
For example, de Finetti (1980) regards P as capturing all information about
the bets that you are prepared to enter into: P(X) is the price that you
regard as fair for a bet that pays 1 unit if X occurs, and 0 otherwise. Ac-
cording to van Fraassen (1990), P encapsulates all information about the
judgments that you make – for example, if you judge it as likely as not that
Madonna will win a Nobel prize, then P (Madonna will win a Nobel prize)
= 1/2. Ramsey (1926), Savage (1954) and Jeffrey (1983b) derive both
probabilities and utilities (desirabilities) from rational preferences (given
various assumptions about the richness of the preference space, and certain
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“consistency” assumptions on the preference relation). In a similar spirit,
Lewis (1986a, 1994a) analyses P as the probability function belonging
to the utility function/probability function pair that best rationalizes your
behavioral dispositions (rationality being given a decision-theoretic gloss).

Objective probability: This is often called objective chance. It exists
heedless of our beliefs and interests. Long run relative frequency is typic-
ally a good guide to determining it. (Some, e.g., Reichenbach 1949, think
that, more than being a good guide, such relative frequency should be iden-
tified with objective chance; but I part company with them there – see my
1997.) Chance also places constraints on rational credence, via something
along the lines of Lewis’ (1980, 1986b) Principal Principle – more on that
in Section 8.5. Some authors (e.g., Popper (1959a), Mellor (1971), Fetzer
(1983), and many others – see Gillies (2000) for a survey) regard it as a
kind of propensity, or disposition, or causal tendency for an outcome to be
brought about by an experimental arrangement. For example, according
to Popper, a probability p of an outcome of a certain type is a propensity
of a repeatable experiment to produce outcomes of that type with limiting
relative frequency p. Lewis among others contends that chances evolve
over time, the past (relative to any given moment of time) always having a
chance of 1. Quantum mechanical probabilities are standardly regarded as
objective. Chance values are plausibly determined by the laws of nature.
Some authors (e.g., Lewis 1986b, p. 118) regard a deterministic world as
one in which all chances are 0 or 1.

2.2. Vague Probability

Let us drop the assumption that a given proposition is assigned a unique,
sharp value, and allow instead that it may be assigned a range of values.
I will follow van Fraassen’s (1990) representation of vague subjective
probability (which develops proposals by Levi (1974, 1980) and Jeffrey
(1983a), among others). I will then extend it to the case of objective
probability.

Suppose that your state of opinion does not determine a single probabil-
ity function, but rather is consistent with a multiplicity of such functions. In
that case, your opinion is represented as the set of all these functions. Call
this set your representor. Each function in your representor corresponds
to a way of precisifying your opinion in a legitimate way. Imagine, for
example, that your probability for Diego Maradonna winning an Oscar is
not a sharp value; rather, it lies in some interval, say [1/2, 3/4]. Then your
representor contains all probability functions that assign a sharp value in
the interval [1/2, 3/4] to Maradonna’s winning, and that are otherwise com-
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patible with your state of mind. This might be thought of as a probabilistic
analogue of the supervaluational approach to vagueness.

More controversially, let me suggest that we remain open to the pos-
sibility of vague objective probabilities. For example, perhaps the laws of
nature could be vague, and if these laws are indeterministic, then objective
probabilities could inherit this vagueness.5 Be that as it may, I submit that
vague objective probabilities, if there are any, could likewise be understood
in terms of representors. For example, a chance that is vague over the set
S corresponds to a set of sharp chances, taking on each of the values in S.

2.3. Probability Gaps

Furthermore, we can make sense of probability gaps – propositions that
get assigned no probability value whatsoever – under both the subjective
and objective interpretations.

As a point about probability functions in the abstract, this is familiar
enough. We begin with a probability space (�, F , P ), where � is some
set of ‘elementary events’, or ‘possible worlds’, and F is a sigma-algebra
of subsets of �. P is defined on all the members of F , but on no other
propositions. So any subset of � that does not belong to F can be thought
of as a probability gap as far as P is concerned: a proposition to which P

assigns no value.
Decision theory recognizes the possibility of probability gaps in its dis-

tinction between decisions under risk, and decisions under uncertainty: in
the latter case, probabilities are simply not assigned to the relevant states
of the world. Statistics recognizes such gaps in its distinction between
random and unknown parameters: probabilities are not assigned to val-
ues of the latter. And indeed it seems that we must allow for probability
gaps on all of the accounts of subjective probability given above. On the
betting account, this is clear: suppose that you are currently not prepared
to enter into any bet regarding X – for example, you have never even
considered X. (Of course, you might later become prepared to enter into
such bets, having giving X some thought, or upon coercion.) Likewise on
the preference-based accounts, for your preferences may not be defined
over all propositions. Probability gaps are a little harder to come by on
van Fraassen’s and Lewis’ accounts: if you lack determinate judgments
concerning X, or if you lack the relevant behavioral dispositions, then it
seems that all precisifications of the probability of X are legitimate, so that
your probability for X is vague over the entire [0, 1] interval – and that
seems to be something different from a probability gap. But suppose that
you resolutely refuse to assign X a probability, or for some reason cannot
assign X a probability. Then any precisification of the probability of X
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seems to distort your opinion, giving it a value where you choose to remain
silent. In that case, your opinion would be better represented as having a
gap for X. Perhaps, for example, you regard X as lacking a chance value
altogether, and you think that rational opinion concerning X should follow
suit. Or perhaps X involves a future action of yours upon which you are
deliberating; more on this in Section 8.4.

Or perhaps you regard X as non-measurable – a set that simply cannot
be assigned a probability, consistent with certain natural constraints that
one would want to impose. Non-measurable sets notoriously arise in inter-
esting and surprising ways. For instance, consider the case of assigning a
‘uniform’ probability distribution P across the [0, 1] interval. Certain sub-
sets of the interval simply cannot be assigned any probability whatsoever
by P , and so are non-measurable (with respect to it). It is not that they
receive zero probability; rather, they are probability gaps. We may prove
this, à la the textbook, as follows:

By Kolmogorov’s axiomatization, P is countably additive: for every
infinite sequence of mutually disjoint propositions A1, A2, . . . in its
domain,

P

( ∞⋃
n=1

An

)
=

∞∑
n=1

P(An).

Assume further that it is uniform in the sense of being translation invariant:
for any real number �, and any set X, P(X) = P(X+�), where X+� is
the set produced by adding � (modulo 1) to each member of X. Consider
the equivalence relation on [0, 1] satisfied by x and y iff x − y is rational.
This partitions [0, 1] into equivalence classes. Let C be a choice set con-
taining exactly one member of each of these classes (here we assume the
axiom of choice). For each rational r in [0, 1], let Cr be the set you get by
adding (modulo 1) r to each member of C. There are denumerably many
Cr ’s, and they are mutually exclusive. Their union is [0, 1]. Suppose for
reductio that each Cr receives some probability value; by the assumption
of uniformity every Cr receives this same value. Then either this value is
0, in which case

∑
P(Cr) = 0, or it is some positive number, in which

case
∑

P(Cr) = ∞. By countable additivity, we have either 1 = 0 or
1 = ∞. Contradiction. This completes the reductio. We cannot maintain
the assumption that each Cr receives some probability value – but if any
one of them doesn’t, then they all don’t (by the assumption of uniform-
ity). All the Cr’s are thus non-measurable sets. That is, we have proven
the existence of infinitely many probability gaps in the [0, 1] interval –
a surprising and profound result that I will appeal to later on. If we can
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interpret ‘P ’ both subjectively or objectively, we have both subjective and
objective probability gaps – indeed, uncountably many.

2.4. Infinitesimal Probabilities, Countable Additivity, and Regularity

Robinson (1966) exploited compactness to show that there are non-
standard models of first order analysis containing positive infinitesimal
elements: positive numbers smaller than every positive real. Consider a
first order language appropriate for real analysis – in particular, for each
real number r, there is a name r. The theory of analysis consists of all the
sentences of this language that are true according to the standard model.
Consider the theory that is the union of the theory of analysis, with all
sentences of the form r < y, for each real r. Each finite subset of this
theory has a model; hence, by compactness, this theory has a model as
well. Any such model (and there are many) is a non-standard model of the
real numbers. The denotation of y in such a model is an infinite element,
greater than each of the standard reals. Its reciprocal 1/y is a positive in-
finitesimal element.6 In what follows I will drop the word ‘positive’ before
‘infinitesimal’: while 0 is strictly speaking an infinitesimal (the only real
one, in fact), my interest in infinitesimals will concern the positive ones,
and when philosophers speak of infinitesimal probabilities, it’s typically
the positive ones they have in mind.

Kolmogorov’s axiomatization stipulates that probability measures are
real-valued; hence according to that axiomatization, there can be no in-
finitesimal probabilities. We may wish to relax the stipulation, and indeed
philosophers such as Skyrms (1980) and Lewis (1980) explicitly embrace
infinitesimal probabilities. However, the stipulation is not idle. For as I
have said, Kolmogorov also required probabilities to be countably additive.
But the notion of countable additivity does not even make sense in the
context of non-standard analysis, and there is no obvious analogue of it.
For the very statement of countable additivity requires the taking of a ‘limit
as n tends to infinity’ of a sequence of partial sums of probabilities, and it
turns out that this is not something that can even be said in the language of
non-standard analysis (the set of natural numbers, which gets appealed to
in the ε-N definition of the limit, is not an ‘internal’ set).

Finally, a probability function is said to be regular iff it assigns prob-
ability 1 only to logical truths, and 0 only to contradictions. (For our
purposes, we might equally define a regular function as one that assigns 1
only to the necessary proposition(s), and 0 only to the impossible proposi-
tion(s) – any differences that there might be between the two definitions
will not matter to us here, and I will use both sentential and proposi-
tional locutions.) A number of authors propose versions of the idea that
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rational credence functions are regular (sometimes calling them ‘strictly
coherent’), among them Kemeny (1955), Jeffreys (1961), Carnap (1963),
Edwards et al. (1963), Stalnaker (1970), Shimony (1970), and Appiah
(1985). Note that an agent who updates by conditionalization upon some
item E of evidence ends up with an irregular probability function, for
P(E) becomes 1. So the proposal of regularity contradicts another widely
endorsed claim about rationality: that updating should take place by con-
ditionalization. For further opposition to the demand for regularity, see de
Finetti (1972) and Levi (1978).7

We turn now to the promised Four Horn theorem. Each of the four
sections that follow it (Section 4–7) focuses on a type of ‘trouble spot’
for the ratio analysis: zero probabilities, infinitesimal probabilities, vague
probabilities, and undefined probabilities. The discussion in these sections
is largely self-contained, and the reader who is impatient with technical-
ities (or simply impatient) may want to skip directly to them. What the
theorem, coupled with a widely accepted assumption, show is that the
trouble spots are inescapable, and that they are, to put it mildly, plentiful.
There’s trouble, and a lot of it.

3. THE FOUR HORN THEOREM8

We begin by proving a theorem concerning probability measures (that need
not be total functions). As usual, they are real-valued, and sharp (that
is, single functions). We then relax these assumptions, generalizing the
theorem for probability functions that may also take infinitesimal values,
giving a corollary for such functions that are regular, and then a theorem
concerning vague probability assignments. This culminates in the Four
Horn theorem, which puts the results together. This theorem, combined
with an assumption regarding propositions, implies that every probab-
ility function has uncountably many trouble spots. These trouble spots,
moreover, will be central to my attack on the ratio analysis.

PROBABILITY MEASURE THEOREM. Let � be an uncountable set.
Any (real-valued, sharp) probability measure fails to assign positive
probability to uncountably many subsets of �.

Proof. Let uncountable � be given, and let P be a (real-valued, sharp)
probability measure. Let D be an uncountable set of disjoint subsets of �.
(The disjointness will come in handy when we appeal to finite additivity.)
For each n = 1, 2, . . . consider

Gn = {S ∈ D: P(S) ≥ 1/n}.
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Each set in G1 has probability at least 1; it thus has at most 1 member.
Each set in G2 has probability at least 1/2; it thus has at most 2 members
(by finite additivity of P ) . . .
For each i, Gi has at most i members (by finite additivity of P ), and is thus
a finite set.

Therefore, ∪i Gi is countable, being a countable union of finite sets.
This is the set of members of D that receive positive, non-infinitesimal
assignments from P (since for any positive, non-infinitesimal x, there is an
n such that x ≥ 1/n). This leaves uncountably many members of D, that
is, subsets of �, that do not receive positive, non-infinitesimal assignments
from P .

Since P is real-valued, it does not assign positive, infinitesimal prob-
abilities; thus, the word ‘non-infinitesimal’ was redundant in the previous
sentence. That is, we have shown that uncountably many subsets of � do
not receive positive assignments from P . Q.E.D.

How can a (real-valued, sharp) probability measure P fail to assign
positive, non-infinitesimal probability to a given set? There are two ways:
by assigning it 0 probability, or by assigning it no probability whatsoever.
Now let us relax the assumption that P is a measure, allowing it to take
infinitesimal values; in that case we will still call P a ‘probability func-
tion’, even though strictly speaking we have gone beyond Kolmogorov’s
axiomatization. Then there is a third way in which a probability function
P can fail to assign positive, non-infinitesimal probability to a given set:
by assigning it infinitesimal probability. We have a strengthening of the
probability measure theorem:

PROBABILITY FUNCTION THEOREM (infinitesimals allowed). Let �

be an uncountable set. Any (sharp) probability function either assigns 0 to
uncountably many subsets of �, or assigns infinitesimal probability to un-
countably many subsets of �, or fails to assign probability to uncountably
many subsets of �.

Proof. The proof is as before, up to and including: “This leaves uncount-
ably many members of D, that is, subsets of �, that do not receive positive,
non-infinitesimal assignments from P ”. Then we reason as follows. The
following union of sets is uncountable:

{S ∈ D : P(S) = 0} ∪ {S ∈ D : P(S) is infinitesimal}
∪ {S ∈ D : P(S) is undefined}.

Thus, at least one of these three sets of subsets of � is uncountable (for if
each of them were countable, their union would be also). Q.E.D.
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With minimal extra work, we get:

REGULARITY THEOREM. Any regular probability function defined
on uncountably many mutually disjoint propositions assigns infinitesimal
probabilities to uncountably many propositions.

Proof. Let P be a regular probability function defined on an uncount-
able set D of mutually disjoint propositions (and on other sets, too, of
course). The proof goes through as before. Then note that since P is regu-
lar, it assigns 0 only to the empty set. Thus {S ∈ D: P(S) = 0} cannot be
uncountable; indeed, it has at most one member. Nor can {S ∈ D: P(S) is
undefined} be uncountable; indeed, it is empty (by definition of D). This
leaves {S ∈ D: P(S) is infinitesimal} as the set that must be uncountable.
Q.E.D.

So far, our theorems have concerned (sharp) single probability functions.
Vague probability assignments, on the other hand, are represented by (non-
singleton) sets of such functions, or representors. So now let the term
‘probability assignment’ subsume both sharp probability functions and
vague probability assignments.

VAGUE PROBABILITY THEOREM. If a probability assignment defined
on an uncountable algebra of propositions is vague at all, then there are
uncountably many propositions to which it assigns vague probability.

Proof. Let a vague probability assignment V defined on an uncountable
algebra of propositions U be given. It corresponds to a representor with at
least two probability functions defined on U. Choose two such functions,
P1 and P2. V assigns vague probability to each proposition on which they
differ. Hence it suffices to show that they differ on uncountably many
propositions.

Since P1 and P2 are distinct, there is some proposition D ∈ U on which
they differ:

P1(D) �= P2(D).

Thus, P1(D
c) �= P2(D

c), where Dc ∈ U also.
Since U is uncountable, either

(i) there are uncountably many propositions in U disjoint from D, or
(ii) there are uncountably many propositions in U disjoint from Dc.

(Any proposition X ∈ U that has non-empty intersection with both D and
Dc can be split into two parts: X ∩ D ∈ U, which is disjoint from Dc, and X

∩ Dc ∈ U, which is disjoint from D.) Without loss of generality, suppose (i)



284 ALAN HÁJEK

is the case. If P1 and P2 differ on uncountably many of these propositions,
we are done. So suppose that P1 and P2 differ on only countably many of
these propositions; they thus agree on uncountably many of them. But for
each such proposition A on which they agree, they disagree on D ∪ A:

P1(D ∪ A) = P1(D) + P1(A), since D and A are disjoint,

= P1(D) + P2(A), since P1 and P2 agree on A,

�= P2(D) + P2(A), since P1 and P2 differ on D,

= P2(D ∪ A), since D and A are disjoint.

Each of the uncountably many candidates for D ∪ A is a proposition for
which P1 and P2 differ; each of them is thus a proposition to which V

assigns vague probability. Q.E.D.
Every probability assignment is either sharp or vague. Putting our

results together, we have the

FOUR HOUR THEOREM. Any probability assignment defined on an
uncountable algebra on an uncountable set either

1. assigns zero probability to uncountably many propositions; or
2. assigns infinitesimal probability to uncountably many propositions; or
3. assigns no probability whatsoever to uncountably many propositions;

or
4. assigns vague probability to uncountably many propositions

(where the ‘or’s are inclusive).

We now make an assumption about propositions, one that many will
regard as not just true, but necessarily so.

ASSUMPTION. There are uncountably many mutually disjoint proposi-
tions.

JUSTIFICATION. For each real number in [0, 1], there corresponds a dis-
tinct proposition. For example, imagine throwing an infinitely fine dart at
the interval. For each r in the interval, there is a proposition Lr to the effect
that the dart lands exactly on r. Moreover, these propositions are mutually
disjoint. If you prefer, consider instead a particular radium atom; for each
time t > 0 there is a proposition that the atom decays exactly at time t ,
disjoint with all the others. Or if you prefer to think in terms of possible
worlds (be they concrete, abstract, or what have you), and propositions as
sets of possible worlds: there are uncountably many possible worlds, thus
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infinitely many mutually disjoint propositions (e.g., the singleton sets of
these worlds; cf. Lewis 1986c).

We are now in the realm of metaphysics rather than mathematics. Com-
bining our mathematical theorem with our metaphysical assumption, we
have the more startling result: any probability assignment whatsoever has
uncountably many trouble spots: propositions that it assigns zero probabil-
ity, infinitesimal probability, vague probability, or no probability at all. If it
is defined on an uncountable algebra of propositions of an uncountable set,
the mathematics alone does the work. If it is not, the metaphysics chimes
in: whatever algebra it is defined on, outside that algebra it is undefined on
uncountably many propositions.

The following four sections address the four sorts of trouble spots for
the ratio analysis that we find in the Four Horn theorem. It will prove
convenient to take them slightly out of order: zero probability assignments
(Section 4), infinitesimal probability assignments (Section 5), vague prob-
ability assignments (Section 6), and no probability assignment whatsoever
(Section 7). It is inescapable that any probability assignment lands on at
least one of the four horns. Moreover, it is noteworthy that each horn
is actually occupied by various interesting probability functions. In each
section I will give examples that are both paradigm cases of what it is like
to land on the relevant horn and of independent philosophical interest.

4. THE ZERO DENOMINATOR PROBLEM

Suppose that we have a probability assignment that lands on the first horn:
it assigns zero probability to uncountably many propositions. Then for
each such proposition, all probabilities conditional on it are undefined as
far as the ratio analysis is concerned. After all, (RATIO) comes with a
proviso: the condition must have positive probability. Jackson remarks:
“The restriction to cases where P(B) > 0 is less severe than may at first
appear” (11, adapting his notation). His argument for this is essentially
that all rational credence functions are regular. Again, I am only using
Jackson as a foil, and this opinion is widely voiced. But I believe that on
the contrary, the restriction is more severe than may at first appear. The
ratio analysis fails to give values to certain conditional probabilities that
apparently are well-defined. Let us call this the zero denominator problem.

The problem is well known.9 Indeed, given how many probability text-
books go out of their way to caution the reader that ‘probability 0 does not
imply impossible’, it is perhaps surprising that more is not made of it, at
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least in philosophical circles. In any case, let me mention some particularly
interesting cases in which it arises – some familiar, some less so.

4.1. Some Textbook Examples

Continuous random variables give rise to non-trivial events of probability
0. Associated with such a random variable is a probability density function
(think, for example, of the ‘bell’-shaped normal distribution). The probab-
ility of a continuous random variable X, taking a particular value x, equals
0, being the integral from x to x of X’s density function. Yet it would seem
that various probabilities, conditional on this event, are well-defined, for
example:

P(X = x, given X = x) = 1.

Indeed, here and throughout the paper, we hold this truth to be self-evident:
the conditional probability of any (non-empty) proposition, given itself, is
1. I think that this is about as basic a fact about conditional probability as
there can be, and I would consider giving it up to be a desperate last resort.
Some others are comparably basic; in the case before us they include:

P(X �= x, given X = x)= 0,

P(T, given X = x)= 1, where T is a necessarily true proposi-
tion (e.g., “everything is self-identical”),

P(F, given X = x)= 0, where F is a necessarily false proposi-
tion (e.g., not-T).

Less trivially, various conditional probability assignments based on judg-
ments of independence are compelling – for instance:

P (this coin lands heads, given X = x) = 1/2.

Further examples are provided by the behavior of relative frequencies
of events in independent, identically distributed trials. Various laws of large
numbers concern the convergence of such relative frequencies to the cor-
responding true probabilities. However, they do not guarantee that relative
frequencies will so converge; rather, the convergence only occurs ‘with
probability 1’. This caveat isn’t just coyness – a fair coin could land heads
every toss, forever, although its doing so is an event of probability 0. If you
think that this sequence of results cannot happen ‘because’ it has probab-
ility 0, then you should think that no sequence can happen, since each
sequence has the same probability. Again, however, various probabilities
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conditional on such events would seem to be well defined: P(the coin lands
heads forever, given the coin lands heads forever) = 1, and so on.

We may regard the probabilities in these cases objectively or subject-
ively. Other cases arise specifically for objective probabilities.

4.2. Chances

It would appear that objective probability functions are not regular. For
example, it is plausible that the chance function Pt at any given time t lands
on the first horn of the Four Horn theorem. Lewis, for example, contends
that the past is not chancy: any proposition whose truth value is settled at a
time earlier than t is assigned either 1 (if it is true), or 0 (if it is false) by Pt .
And there are uncountably many such propositions that are false. Suppose
that a coin landed heads at 12:00, and consider

P12:01 (the coin landed tails, given the coin landed tails).

This conditional probability should equal 1, but according to the ratio
formula, it is undefined. Similar points can be made using each of the
uncountably many false propositions about the past as the condition.

Or consider some proposition about the future – for example, ‘an
eclipse will occur at 15:52’, and the conditional probability:

P12:01 (an eclipse will occur at 15:52, given an eclipse will occur
at 15:52).

This should equal 1, whether or not the condition is false. And according
to Lewis among others, if the world is deterministic, then all false propos-
itions have chance 0 at any time. In that case, if the condition is false, this
conditional probability is undefined according to the ratio analysis; if the
condition is true, change the example, replacing ‘occur’ with ‘not occur’.
Thus, the adequacy of the ratio analysis is held hostage to empirical mat-
ters: the world had better not be deterministic! Clearly, the ratio analysis
cannot have empirical consequences. So if the conditional probability is 1,
irrespective of whether the world is deterministic, the analysis is refuted.
Similar points can be made using conditional probabilities involving T and
F, as before.

The proponent of the ratio analysis of conditional chance is thus
committed to saying either

(1) the chance function (at any given moment of time) is regular; or
(2) conditional chances of the form P (X, given Z) are never defined when

P(Z) = 0.
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(1) is implausible; logic and chance surely do not align so neatly. In any
case, (1) appears to be an empirical claim, one hardly discoverable by pure
conceptual analysis. But (2) is hardly appealing, either, as I have argued.
Indeed, conjoined with the claim that the chance function is irregular at
some time, it contradicts a truth we hold to be self-evident.

4.3. Subjective Probabilities

Still other cases arise more naturally for subjective probabilities. Let P

be the credence function of a rational agent. If, contra Kemeny, Jeffreys
et al., P is irregular, then it assigns 0 to at least one logically possible
proposition. Let Z be such a proposition. I claim that rationality requires
the following assignments: P (Z, given Z) = 1, P (Zc, given Z) = 0, P (T,
given Z) = 1, and P (F, given Z) = 0. But an advocate of the ratio analysis
cannot even grant that rationality permits these assignments.

We have already noted that updating by conditionalization leads one to
irregularity. Suppose, for example, that you begin by assigning probability
1/2 to a given die landing with an odd face showing up. The die is tossed,
and you conditionalize on the evidence that the die landed odd. You then
assign probability 0 to the die landing with an even face showing up on that
toss. Still, surely rationality permits you to assign P (die landed even, given
die landed even) = 1 (and, I would add, even requires it). We have, then,
a rational credence function P that assigns a conditional probability that
cannot be equated to a corresponding ratio of unconditional probabilities.

There are uncountably many propositions on which conditionalization
could take place. It seems, then, that there are uncountably many candid-
ates for Z for some rational credence functions. They thus land on the first
horn of the Four Horn theorem. But that is just icing on the cake – one
such candidate is all I need to make my point.

We have a dilemma. Either:

(1) all rational credence functions are regular; or
(2) for all rational credence functions P , conditional probabilities of the

form P (X, given Z) are never defined when P(Z) = 0.

As we have seen, various authors opt for (1). They thus commit them-
selves to saying that updating by conditionalization is always irrational.
They also seem to have a novel ‘proof’ of the non-existence of God (as
traditionally conceived) – for an omniscient agent who is certain of which
world is the actual world is thereby convicted of irrationality! By their
lights, rationality requires a certain form of ignorance regarding all contin-
gent propositions, or else false modesty. And even if regularity is such a
requirement on rationality, we all fall short of such requirements. But when
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we (irrationally?) assign 0 to a contingent proposition A, we still seem
to have no trouble giving various corresponding conditional probability
assignments that are apparently rationally required, and surely rationally
permitted – for example, P (A, given A) = 1.10 (2) may seem to be more
palatable, then. But do we really want to say that rationality does not even
permit conditional probabilities such as P (Z, given Z) to be defined?

4.4. Symmetric Distributions

Symmetric probability assignments over uncountable sets give rise to par-
ticularly acute problems for the ratio analysis, because many (indeed,
uncountably many) non-trivial conditional probabilities with probability
zero conditions are apparently well-defined, and their values are obvious.
Here are some familiar examples.

(i) (Due to Borel.) Suppose that we have a uniform probability measure
over the Earth’s surface (imagine it to be a perfect sphere). What is the
probability that a randomly chosen point lies in the western hemisphere
(W ), given that it lies on the equator (E)? 1/2, surely. But the probability
that the point lies on the equator is 0, since the equator has no area.

And the problem could be made to go the other way. We could embed
the Earth’s surface in a much larger space, relative to which it has measure
0. Yet P (the point lies on the earth’s surface, given the point lies on the
earth’s surface) = 1, and still P (the point lies in the western hemisphere,
given the point lies on the equator) = 1/2.

(ii) Imagine throwing an infinitely fine dart at the [0,1] interval. Sup-
pose that the probability measure for where the dart lands is uniform over
the interval – the so-called ‘Lebesgue measure’. What is the probability
that the dart lands on the point 1/4, given that it lands on either 1/4 or
3/4? 1/2, surely. But the probability that the point lands on 1/4 or 3/4 is 0
according to the uniform measure.

The probability functions associated with these examples land on the
first horn of the Four Horn theorem: they assign probability 0 to uncount-
ably many propositions. In (i), we could have asked a similar question
for each of the uncountably many lines of latitude, with the same answer
in each case. In (ii), we could have asked a similar question for each of
uncountably many pairs of points in [0, 1], with the same answer in each
case. In all of these cases, the ratio analysis fails to yield an answer for the
conditional probability, yet it is seemingly well-defined in each case.

We could interpret the uniform probability here either objectively or
subjectively. In (i), there might be some genuinely chancy process that
determines the selected point without any bias – perhaps a random number
generator based on some quantum mechanical event is used to specify a
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latitude and a longitude. And supposing, as we might, that you believe that
this is indeed the selection mechanism, your own subjective probabilities
should be correspondingly uniform. Similar points apply to (ii).

You might try to recover the desired answers by taking appropriate
limits. You might imagine, for example, a sequence of nested strips around
the equator, shrinking to the equator in the limit, and define the conditional
probability of W , given E, as the limit of the sequence of ratios of the
form P(W ∩ E)/P (E). You would need to rule out in a non-question
begging way strips that give the wrong answer: for example, we could
have converging on the equator a sequence of strips, fat in the west, thin in
the east, yielding answers greater than 1/2. Of course, the proposal would
not rescue finite cases in which the zero denominator problem arises – e.g.,
conditioning on the die landing odd. But more to the point, the proposal is
not the ratio analysis, but rather a substantially more complicated analysis
in which ratios appear.

Note that the assumption of uniformity in the last examples is not es-
sential to producing the zero denominator problem; it is only there to make
the answers obvious. Since there are uncountably many propositions to
distribute probabilities over, a real-valued probability measure must assign
0 to uncountably many of them, for it does not assign any infinitesimal
values. Note also that it is not the answers themselves that matter, but the
fact that there are answers. If for some reason you disagree with me on the
answers that I have suggested, but agree with me that there are answers,
you should agree with me that the ratio analysis is inadequate.

You may be tempted to bite the bullet, saying: “the conditional prob-
ability is undefined in these cases – there is no answer, because the ratio
analysis gives no answer. If this conflicts with our intuitions, too bad for
those intuitions. Our intuitions about cases involving infinities were never
that trustworthy, anyway”. This is often the right way to respond to a sur-
prising result. Consider the result that the set of even numbers and the set
of integers have the same cardinality. This offends the intuitions of many
of us. Yet I would not want to run the following superficially parallel argu-
ment: “Mathematicians have not adequately analyzed our concept of ‘size
of set’, for they saddle us with an unintuitive result”. Rather, I would say
that if this result conflicts with our intuitions, too bad for those intuitions.
They were never that trustworthy, anyway.

And I might say that of the earth’s surface and dart examples, too, if
that were the end of the story. But it is not.
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4.5. Kolmogorov’s Elaboration of the Ratio Formula

It turns out that an elaboration of the idea behind the ratio analysis, also
due to Kolmogorov, delivers our intuitive answers of 1/2. So our intuitions
were apparently quite sound, and in no need of revision. Kolmogorov him-
self was well aware of the zero denominator problem, and this is what
motivated him to elaborate the ratio analysis to handle cases such these.
I will briefly describe the Kolmogorov elaboration, though this is not the
place to show how it delivers the desired answers.

He introduces the concept of probability conditional on the outcome
of a random experiment. The experiment is represented by a sub-σ -field
F of the total σ -field under consideration. We define the random variable
P(A ‖ F ), the probability of A conditional on F , which assumes dif-
ferent values according to which propositions in F are established as true
on the basis of the experiment. P(A ‖ F ) is a random variable (whose
existence is guaranteed by the Radon-Nikodym theorem) which satisfies
the following condition:

(RV)
∫

B

P (A ‖ F )dP = P(A ∩ B) for all B ∈ F

Compare this to the simple transposition of (RATIO):

(PRODUCT) P(A | B)P (B) = P(A ∩ B).

It turns out that this gives us a way of coping with the zero denomin-
ator problem, while preserving the guiding idea behind the simpler ratio
analysis.11 We see, then, that we have no need to revise the intuitions
that tell us that certain conditional probabilities take particular values in
examples such as these.

It might thus be thought that my attack on the ratio analysis is mis-
directed, and that my real target should be the full-blown Kolmogorov
analysis. In response to this, let me firstly observe that it is clearly the
ratio analysis that has the limelight in the philosophical literature, and the
full-blown analysis is relatively rarely discussed by philosophers.12 Indeed,
various well-known philosophical tomes on probability do not mention
Kolmogorov’s elaboration (e.g., Fine (1973), Rosenkrantz (1981), Earman
(1992), Howson and Urbach (1993), among many others). But more im-
portantly, I think that the full-blown analysis is also inadequate. There are
cases in which the probabilities of conjunctions required by the right-hand
side of (RV) are vague or undefined, and yet the corresponding conditional
probabilities are defined, as we will see in Section 6 and Section 7.
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5. INFINITESIMAL PROBABILITIES13

You might think that this is a job for non-standard analysis. Recall the reg-
ularity theorem: any regular probability function defined on uncountably
many mutually disjoint propositions assigns infinitesimal probabilities to
uncountably many propositions. Since there are such regular functions, we
know that the second horn of the Four Horn theorem is occupied.14 I will
now argue that any function impaled on this horn is in an important sense
defective. Infinitesimals do not provide the sanctuary for the ratio analysis
that one might hope for.

It will be helpful to begin by returning to our examples of the earth’s
surface, and the [0, 1] interval, so that we can see how infinitesimal as-
signments might naturally arise. One might claim that using infinitesimal
probabilities in the ratio formula will deliver the correct answers in these
examples: “The probability that the chosen point lies on the equator is not
0, but rather some positive infinitesimal, ε say; the probability that it lies in
the western hemisphere and on the equator is ε/2. Likewise, the probability
that the dart lands on 1/4 or 3/4 is some positive infinitesimal, twice the
probability that it lands on 1/4. (RATIO) then gives the correct answer of
1/2 in each case”. One hears this sort of claim a lot in this line of work,
and it has considerable prima facie plausibility.

However, I find it wanting, for any putative infinitesimal assignment is
ineffable. In order to speak of non-standard numbers such as infinitesimals,
one must have a non-standard model. We are guaranteed the existence of
such a model, if we assume the axiom of choice; but we are also guaranteed
that there are many of them. We cannot pick out a model uniquely, by nam-
ing it or pointing to it. Any talk of ‘the non-standard model’ with which
we are working is quite misleading. Infinitesimal probability assignments
are thus curiously hard to pin down. They are not like familiar probability
assignments such as P (the coin lands heads) = 1/2, or even 1/

√
2 – there is

an ineliminable non-constructive aspect to them. (The appeal to the axiom
of choice ought to alert us to this.) I would analogize them more to a
gesture of the form ‘P (the coin lands heads) = x, for some x in [0, 1]’.
This is slightly unfair, perhaps, for we can pin down certain things about
them – that they lie strictly between 0 and every positive real number, for
instance. Nevertheless, when we are dealing with sets on this tiny scale,
where minute differences count for a lot, we want things pinned down
very precisely. ‘ε’ is a nice name for an infinitesimal probability, but what
is it exactly? So when philosophers gesture at infinitesimal probability
assignments, I want them to give me a specific example of one. But this
they cannot do; the best they can do is gesture.15
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For example, one construction of infinitesimals identifies them with
equivalence classes of sequences of reals (see Lindstrøm 1988). But what
is the equivalence relation? Two sequences are equivalent if they agree
term-by-term, ‘almost everywhere’. But what does ‘almost everywhere’
mean? With measure 1. But what is the measure here? It is a finitely addit-
ive measure, defined on the power-set of the set N of natural numbers, that
assigns only the values 0 and 1, and that assigns 1 to N and 0 to all finite
sets. But this hardly pins it down! What is the measure of the odd numbers,
or the primes, or . . . . ? We cannot fully specify the measure. (In the jargon,
this is the problem of the indefinability of an ultrafilter.) But since we
cannot fully specify the measure, we cannot fully specify what we mean
by ‘almost everywhere’; hence we cannot fully specify the equivalence
relation; hence we cannot fully specify the equivalence classes; hence we
cannot fully specify the infinitesimals. They are thus ineffable.

Note that relative frequencies – even limiting relative frequencies –
cannot be infinitesimal. Nor can Popper-style propensities (since they are
explicitly defined in terms of such limiting relative frequencies). Those
who want to identify objective chances with relative frequencies or such
propensities thus cannot appeal to infinitesimal chances to save the ratio
analysis in cases such as I have discussed.

In any case, once again, calling infinitesimal assignments “probabil-
ities” at all is a revision of the textbook meaning of the word (however
they are identified). For as I have said, the notion of countable additivity
does not even make sense in this context, so this axiom of Kolmogorov’s
must be jettisoned. So be it, perhaps – after all, I have no respect for the
textbook when it comes to its ‘definition’ of conditional probability’! But
let us then be honest, and explicitly state that the several decades’ reign of
his axiomatization should come to an end. In any case, I think it is under-
appreciated how ill salvaging the ratio formula by means of infinitesimals
sits with the rest of the axiomatization.

6. SHARP CONDITIONAL PROBABILITIES, VAGUE UNCONDITIONAL

PROBABILITIES

We turn to the next set of trouble spots for the ratio analysis: vague
probability assignments.

What is your subjective probability that the Democrats win the next
election? If you give a sharp answer, I would ask you to reconsider. Do
you really mean to give a value that is precise to infinitely many decimal
places? If you’re anything like me, your probability is vague – perhaps
over an interval, but in any case over a range of values. Now, what is your
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probability that the Democrats win, given that the Democrats win? Here
there is no vagueness: the answer is clearly 1. This is our first example of a
conditional probability that is sharp, while the unconditional probabilities
in the corresponding ratio are vague. Similarly, P (the Democrats do not
win, given the Democrats win) = 0; and where T and F are respectively
necessary and impossible, P (T, given the Democrats win) = 1, and P (F,
given the Democrats win) = 0. More interestingly, P (this coin lands heads,
given the Democrats win) = 1/2. I will argue that the ratio analysis cannot
do justice to examples such as these, yet they could hardly be simpler.

To be sure, we have gone beyond orthodox Bayesianism, according to
which opinion is always sharp, always modeled by a single probability
function. Let us be unorthodox, then; it is not clear why such sharpness
is a requirement of rationality. Your selling price can differ from your
buying price for a given bet without rendering you susceptible to a Dutch
Book. Your judgments may not determine a unique probability function.
And in Jeffrey’s decision theory, your probability function may not be
fully constrained by your preferences: various utility function/probability
function pairs have equal claim to representing you when your utilities
are bounded above and/or below. In such cases, there is no single utility
function/probability function pair that best rationalizes your behavioral
dispositions. So it seems that the attribution of vague opinion may be un-
avoidable. Moreover, there is a rich body of work on the modeling of such
opinion. It might help supporters of the ratio analysis if vague probability
can be outlawed, but I put little weight on that reason for doing so.

We have seen how vague unconditional probabilities can be handled
“supervaluationally”.16 We consider the set of all of the precisifications of
your opinion, your representor. Let D = ‘the Democrats win’. Since your
probability for D is vague, these precisifications of your opinion assign
various different sharp values to D.

What about your sharp conditional probability, P (D, given D) = 1? If
you are a fan of the ratio analysis, you are probably tempted to defend it
by saying that for each function p in your representor, the ratio

p(D ∩ D)

p(D)
= p(D)

p(D)
= 1.

But if you say that, you have only done my work for me: far from defend-
ing the ratio analysis, you have displayed that it is inadequate.17 For while
you have used a ratio in your defense, you have used more besides. More
generally, the proposal would be to analyze

‘your conditional probability for A, given B, is x’
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as

‘p(A |B) = x for every function p in your representor’

(RATIO + REPRESENTOR)

Granted, this is in the spirit of the ratio analysis. But it clearly adds some-
thing to that analysis, for ‘representor’ is not a term that appears in the
ratio analysis. Notice that I am not (here) saying that (RATIO + REPRES-
ENTOR) is defective; I am saying that (RATIO + REPRESENTOR) is not
(RATIO), and (RATIO) is my target.

In fact, things are still worse than that. For ‘representor’ is a term of art
that has been introduced to mean the set of all precise probability functions
consistent with your state of opinion. But your state of opinion includes
both unconditional and conditional probability assignments. For instance,
if you are like me, you judge that it is a non-negotiable constraint on
any conditional probability assignment that the probability of a non-empty
proposition, given itself, is 1. Yet this is not reducible to facts about ratios
of unconditional probability assignments. (We already saw that with the
zero denominator problem, and we will see it again in the next section.) It
follows that (RATIO + REPRESENTOR) is circular, since it tacitly makes
reference to the very notion of conditional probability that we seek to
analyze. The notion of a ‘representor’ may be useful in modeling vague
opinion, but it will not make a good primitive in the analysis of conditional
probability.

Note that if chances can be vague, then the ratio analysis of conditional
chance is likewise inadequate. For even when the chance of X is vague,
various conditional chances, given X, are sharp: the chance of X, given X

equals 1, and so on.
Finally, the problem of vague unconditional probabilities alongside

sharp conditional probabilities counts equally against Kolmogorov’s elab-
oration of the ratio analysis – for the right hand side of (RV) is vague, yet
it is equated with something sharp.

7. DEFINED CONDITIONAL PROBABILITY, UNDEFINED

UNCONDITIONAL PROBABILITIES

According to the ratio analysis of ‘the probability of A given B’, if either or
both of the numerator P(A∩B) and the denominator P(B) are undefined,
the conditional probability is undefined. Yet there are many cases in which
this is implausible. This unwelcome result for the ratio analysis is avoided
only by incurring undesirable commitments.
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It is this argument that I want to give the most attention. In this section,
I will offer two examples that I will discuss at some length. The first will
be a quite straightforward example involving coin tossing. The second
will be more technical, involving as it does non-measurable sets. It has
the virtue of mathematical rigor, and it shows that conditional probabil-
ities can be well-defined even when the corresponding terms of the ratio
cannot be defined, consistent with certain natural constraints. In the next
section, I will discuss a series of instances drawn from actual scientific and
philosophical practice in which probability gaps arise. In both sections, I
will contend that my argument goes through for subjective and objective
probability alike.18 We will thus see yet again that the relevant horn of the
Four Horn theorem is occupied by many interesting probability functions.

7.1. Subjective Probability

In this section, we will interpret ‘P ’ to be the credence function of a
rational agent: ‘you’.

7.1.1. A Coin Example
Here is a coin that you believe to be fair. What is the probability that it
lands heads (‘Heads’), given that I toss it fairly (‘Toss’)? 1/2, of course.
According to the ratio analysis, it is P (Heads | Toss), that is:

P (the coin lands heads ∩ I toss the coin fairly)

P (I toss the coin fairly)
.

However, I was careful not to give you any information on which to base
these unconditional probabilities. Such information is no part of the spe-
cification of the problem. TakeP (I toss the coin fairly). Perhaps I hate
tossing coins, and would never toss one; perhaps I love tossing coins, but
hate tossing them fairly; perhaps I haven’t made up my mind whether I will
toss it fairly or not, but I will spontaneously decide one way or another a
minute from now; perhaps I will throw a dart at a representation of the
[0, 1] interval, and toss it fairly or not on the basis of where it lands. But
I have told you nothing about that. I believe that it is quite rational for
you, then, not to assign any value to this probability whatsoever. The same
applies to P (the coin lands heads ∩ I toss the coin fairly). The terms in the
ratio, then, remain undefined; and ‘undefined’ divided by ‘undefined’ does
not equal 1/2.

The example could hardly be simpler, yet the ratio analysis falters on
it. However, I want to address three objections that one might have at this
point.
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Objection i. “The unconditional probabilities are in fact defined”
It might be objected that P (Heads ∩ Toss) and P (Toss) are defined after
all. Let us begin with the weakest version of this objection. One might say
that, given your lack of information, you would assign P (Toss) = 1/2, and
P (Heads ∩ Toss) = 1/4, by the symmetry of the situation. For example,
you assign the value to P (Toss) as follows. Either I toss the coin or not,
and there is no basis for favoring one hypothesis over the other, so by the
principle of indifference, each hypothesis should get the same probability,
namely 1/2. And given that the coin is fair, it follows that P (Heads ∩ Toss)
= 1/4.

The principle of indifference famously yields inconsistent results. To
see that here, consider now the hypothesis that I toss the coin while whist-
ling “Waltzing Matilda”. Either I do or I don’t, and you have been given no
information either way, so by the principle of indifference, each hypothesis
should get the same probability, namely 1/2. Now consider the hypothesis
that I toss the coin while singing “The Star Spangled Banner”. By the
principle of indifference, you should assign probability 1/2 to that as well.
I would not recommend it.

One might insist that you must assign a probability to ‘Toss’ nonethe-
less – perhaps based on your prior knowledge about people’s proclivity
towards fair coin tossing, or what have you. I still find this absurd. For
starters, I would ask you to be honest: you didn’t assign any value to ‘Toss’,
did you? But even if you did, for some reason, why must you assign a
value to ‘Toss’? No one is coercing you to make bets on ‘Toss’, or to form
corresponding preferences; no one is coercing you to make the relevant
judgments; no one is coercing you to form the relevant dispositions. And if
someone did coerce you, we would get an answer alright, but it is doubtful
if it would reveal anything about your state of mind prior to the coercion.
In short: why not leave ‘Toss’ as a probability gap? In the words of Fine
(1973, p. 177), “I think it wiser to avoid the use of a probability model
when we do not have the necessary data than to fill in the gaps arbitrarily;
arbitrary assumptions yield arbitrary conclusions”.

Moreover, you might have principled reasons for refusing to fill in the
gaps for ‘Toss’ and for ‘Heads ∩ Toss’. They both apparently involve the
performance of a free act. Now it is not clear that free acts are the sorts
of things to which objective probability attaches. That is, they may well
be objective probability gaps – more on this in Section 7.2.2. And if you
believe them to be objective probability gaps, then you might well delib-
erately refrain from assigning them subjective probability (except under
coercion . . . ).
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Or following Spohn (1977), Kyburg (1988), Gilboa (1994), and Levi
(1997) among others, perhaps you think that there is no obstacle to as-
signing probability to the free choices of other people, but that you cannot
assign probability to your own free choices – more on this in Section 8.4.
Then let us trivially modify the example so that it is you, rather than I, who
chooses whether or not to toss the coin. The gap returns.

Or without even getting into possibly thorny metaphysical issues about
chance, or about free agency, change the example again: What is the prob-
ability that it lands heads, given that Joe tosses it fairly? 1/2, of course.
But there is no fact of the matter of the probability that Joe tosses the
coin fairly. Who is this Joe, anyway? None of that matters, however, to the
conditional probability, which is well-defined (and obvious). By analogy,
we can determine that the argument:

Joe is a liar
Therefore,
Joe is a liar

is valid, even though there is no fact of the matter of the truth value of the
statement ‘Joe is a liar’.

The next objection can be dispensed with more quickly.

Objection ii. “The ratio can be defined without the terms in it being
defined”
You might grant me that the numerator and denominator of the ratio
P(Heads | Toss) are not defined, and hence not known – but maintain
that nonetheless the ratio is known to be 1/2, and hence is defined. You
might say: “It is not uncommon for one to know the value of a ratio
without knowing the values of the terms that enter into it. For example,
one can see two children perfectly balanced on the ends of a seesaw (teeter-
totter), and know that the ratio of their weights is 1, without having a clue
about their individual weights. So the ratio analysis can deliver the correct
answer here, despite the absence of information about the unconditional
probabilities that enter into it”.19

The seesaw analogy is inapt. Even though we do not know the respect-
ive weights of the children, we know that they do have weights. This is just
as well, both for the sake of the children, and for the sake of the ratio of
their weights. For it would be nonsense to say “the ratio of the children’s
weights is 1, but the children don’t have weights”. Rather, one says “the
ratio of the children’s weights is 1, but I don’t know what those weights
are”. On the other hand, it is not the case that there are true but unknown
values of your subjective probabilities for ‘Heads ∩ Toss’ and for ‘Toss’.
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That makes it sound like these values inhabit some shadowy Freudian
realm of your subconscious. If that turns out to be the case, it is hardly
something that we can derive simply by reflection on the ratio formula!
And how could anyone be so confident that these putative values stand in
the right ratio if they remain unknown? Anyway, the putative unconditional
probabilities that the ratio analysis forces upon us simply may not exist, as
I have argued. And it is nonsense to say “the ratio of the unconditional
probabilities is 1/2, but the unconditional probabilities do not exist”.

Objection iii. “Supervaluate”
This reply will be familiar. It grants me that there are gaps for the un-
conditional probabilities of ‘Heads ∩ Toss’ and of ‘Toss’, but insists that
every precisification of these values yields a ratio of 1/2: “While there is
discord among the functions p in your representor regarding the values
of p(Heads ∩ Toss) and p(Toss), they speak with one voice regarding the
value of p(Heads | Toss), saying ‘1/2’ in unison”.

And my counter-reply will be familiar. This reply gives up on the ratio
analysis of the conditional probability here, for it proposes that we replace
that analysis with

p(Heads | Toss) = 1/2 for every function p in your representor’.

So this isn’t really an objection to me at all. Moreover, as I argued in Sec-
tion 6, the term ‘representor’ requires the notion of conditional probability
in its analysis, rather than the other way round.

The ‘supervaluational’ approach essentially tries to identify absence
of probability with presence of vague probability. They are not the same
thing. I have argued that you may rationally assign no probability what-
soever to ‘Toss’. Any precisification then spells out ways that your
probabilities determinately are not. Any filling of your gap for ‘Toss’ is
a distortion of your true state of mind – speaking, where you choose to
remain silent.

7.1.2. Non-Measurable Sets
This brings us to another case in which silence is golden. Recall my dis-
cussion in Section 2.3 of the uniform probability measure over [0, 1], and
its associated non-measurable sets. I gave a proof of the existence of non-
measurable sets – in fact, denumerably many of them: the choice set C,
and all of the translations Cr of it by a rational distance r. Now, the proof
did assume countable additivity, and you may balk right there. However, as
I have said, that is tantamount to balking at Kolmogorov’s axiomatization
of probability. So let me proceed for now under the assumption that you
are less radical than that.



300 ALAN HÁJEK

Imagine again throwing an infinitely fine dart at the [0, 1] interval, with
you assigning a uniform distribution (Lebesgue measure) over the points
at which it could land. What probability do you give to its landing in C?
Surely the answer is: there is no answer. C is the archetypal probability
gap; P(C) is undefined.

Now, what is the probability of the dart’s landing in C, given that it
lands in C? As usual, the answer is 1. So we have P (C, given C) = 1.
What we do not have is P(C |C) = 1. Rather,

C ∩ C = C,

so

P(C | C) = P(C)

P (C)
= undefined

undefined
.

And undefined/undefined is not 1. (You should resist any temptation to say:
“the ratio is 1, since everything is self-identical, and so P(C) = P(C)” –
rather, everything that exists is self-identical, but the probability of C does
not exist.)

We know how to multiply the examples. Here’s another one: P (not-C,
given C) = 0. This case is a little different, because now the ratio analysis
would have us compute a ratio in which only one of the terms is undefined:

P(not-C | C) = P(not-C ∩ C)

P (C)
= 0

undefined
= undefined.

As before, let T be necessary: P (T, given C) = 1, while P (T | C) is
undefined. Let F be impossible: P (F, given C) = 0, while P(F | C) is
undefined. And as before we can give non-degenerate examples: P (a fair
coin lands heads, given C) = 1/2, while P(a fair coin lands heads | C) is
undefined. In fact, it seems that for every possible value, we can produce a
conditional probability that intuitively has that value, yet that has no value
according to the ratio analysis. Suppose a second dart is also thrown at
[0, 1], independently of the first. For each real number r in the interval, we
have

P (the second dart lands inside [0, r], given C) = r.

Again and again (uncountably many times!), the ratio analysis fails to yield
the correct answer – or, indeed, any answer.

You might say that since it fails to yield an answer, there is no answer –
that conditional probabilities go undefined when the conditions are non-
measurable. This is another ‘bullet’-biting response, reminiscent of the
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one I discussed in connection with the zero denominator problem. But
again it strikes me as quite unsatisfactory. When I held it as self-evident
that the conditional probability of every (non-empty) proposition, given
itself, is 1, no proposition (apart from the empty one) was exempt. Every
proposition implies itself, however strange that proposition might be in
other respects. C is no exception. The truth of C, conditional on the truth
of C, is guaranteed.

‘Supervaluating’, I have argued, revises rather than rescues the ratio
analysis; but in any case it will not make the problem go away. We could
try to save the ratio analysis by considering each possible assignment of
a precise value to C, and claiming that the ratios above come out right
on each such assignment. (Well, not quite each such assignment, since we
can’t allow an assignment of 0 to C – the zero denominator problem strikes
again!) We could, that is, consider extensions of our measure that assign
a value to C, where previously it received none. But we cannot replicate
the given probability assignment for each translated counterpart Cr of C

– that was the point of the proof of the existence of non-measurable sets,
after all. Yet translation invariance was an inviolable constraint on the dis-
tribution. In short, each ‘valuation’ would distort the original probability
distribution, making it ‘lumpy’ rather than uniform.

The point is this: it is impossible to meet both the unconditional and
the conditional probability (as analyzed by the ratio) constraints at the
same time. If we respect the unconditional probability assignments, the
conditional probability assignments are not respected: where we should be
getting well-defined answers such as 1 and 0, we get no answer at all. If we
respect the conditional probability assignments (as analyzed by the ratio),
the unconditional probability assignments are not respected: a distribution
that is supposed to be uniform turns out to be lumpy. A supporter of the
ratio analysis is then forced to say that there is no such thing as a uniform
(i.e., translation invariant) distribution over [0, 1]. But that is a strange
thing to say.

Incidentally, not even Kolmogorov’s elaboration of the ratio analysis
will help here. The crucial formula, remember, was this:∫

B

P (A ‖ F )dP = P(A ∩ B) for all B ∈ F .(RV)

We cannot substitute C for both A and B, because C does not belong to
the relevant sigma-algebra (being non-measurable). There is no sense to
be made of the right-hand-side of this equation in our example, because
P(C ∩ C) has no value.

There are ways to avoid non-measurable sets, but they are not cost-
free. For example, if we drop countable additivity and assume only finite
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additivity, we can restore measurability of all sets in the power set of our
sample space. But finite additivity leads to other headaches, notably fail-
ures of conglomerability (Schervish et al. 1984). So non-measurable sets
won’t go away so easily.

One might concede all of this, but regard these examples as ‘don’t
cares’. One might call them strange, or even pathological. But calling them
names won’t make them go away; and if we want to develop a rigorous and
fully general probability theory, then we are stuck with them. In fact, we
are stuck with many of them – for it can be shown that every set with
positive Lebesgue measure contains a non-measurable set.

More to the point, I do not accept that they are so strange. For a set that
is non-measurable with respect to one measure is measurable with respect
to another.20 In this sense, ‘non-measurable’ is quite a misnomer. Calling
a set ‘non-measurable’ makes it sound as if non-measurability is both an
intrinsic and a modal property of the set, one that it has once and for all; this
in turn invites the name-calling. I want to stress that non-measurability is a
relation that a set may bear to one probability measure, while not bearing
it to another.

To be sure, one measure might be especially salient, as the Lebesgue
measure is in our dart example. Still, even fixing that measure, the dart
must land in some non-measurable set – wherever it lands, it lands inside
Cr for some r. After all, the {Cr} form a partition of [0, 1]. So in this sense,
there is simply no avoiding ‘strange’ things happening. But this fact is
utterly commonplace! It is as mundane as the fact that your body currently
occupies a certain salient region of space B, while also lying inside various
gerrymandered regions of space, such as the mereological sum of B, the
Eiffel Tower, and Alpha Centauri. And far from being of marginal interest,
the existence of non-measurable sets is one of the most important results
of measure theory. Non-measurable sets also have interesting applications,
as we will see shortly.

7.2. Objective Probability

That completes the problem of undefined unconditional probabilities,
defined conditional probabilities, in the case of subjective probability. Now
I want to show that the problem remains in the case of objective probability.
Again, we see that the ratio analysis fails for conditional chance.

In this subsection, I will do things in the opposite order from the last
subsection. That is, I will start with a brief reprise of the non-measurable
sets problem, since that is fresh in our minds, then revisit the coin problem,
then proceed to further problems.
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7.2.1. Non-Measurable Sets, Revisited
I can recast the problem of non-measurable sets very quickly. After all,
the proof of the existence of non-measurable sets was neutral as to the
interpretation of probability. So all of the things I said before now get con-
strued in terms of objective probabilities. We can think of the dart-throwing
as an objectively chancy process, with a uniform chance distribution over
the [0, 1] interval. Since chance supposedly conforms to the probability
calculus, we simply repeat the argument that showed the existence of non-
measurable sets, such as C. Now, C is understood as a chance gap. The
conditional chance of the dart landing in C, given it lands in C, is 1; but
this cannot be represented as the ratio of the chance of C to itself, for there
is no such thing as the chance of C. Likewise for the other examples that I
gave in the previous sub-section.

What’s more, objective conditional probabilities with non-measurable
conditions have proved to be of significant use. Witness Pitowski’s (1989,
Ch. 5) employment of them in modeling quantum statistics with “real-
istic” local hidden variable theories, according to which the violations of
classical Bell-type constraints occur because of the non-measurability of
certain events (associated with subsets of [0, 1]).

7.2.2. The Coin Example, Revisited
Now let’s return to the coin example. It is reasonable to suppose that there
is a certain conditional chance that the coin lands heads, given that I toss it
fairly – indeed, supposing the coin to be fair, that chance is surely 1/2,
at least at any time t up to the moment the toss begins. The advocate
of the ratio analysis equates the conditional chance with the ratio of two
unconditional chances, Pt (Heads ∩ Toss) and Pt (Toss), for all such t . But it
is not clear that these chances are all defined, for they involve propositions
about free acts.

The conviction that chances attach to propositions about free acts, such
as ‘Toss’, is perhaps best justified by appealing to the grander conviction
that every proposition has a chance attached to it, and then finding a jus-
tification for that. After all, if there are counterexamples to the grander
conviction, then propositions about free acts may well be good candidates
to be among them.

Indeed, the advocate of the ratio analysis had better justify the grander
conviction – otherwise I will simply appeal to the existence of some chance
gap G, whatever it may be, and then use P (G, given G) to make my point.
But showing that there are no chance gaps will be no easy task, since this is
a significant and contentious metaphysical contention. Why think it? Levi
(1980) doesn’t; van Fraassen (1989) doesn’t. Cartwright (1999) doesn’t,
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and indeed she thinks that chances only arise in rather special circum-
stances so that, in my terminology, chance gaps predominate. I am agnostic
about their ubiquity – partly because I am not sure what chance exactly is
in the first place, even though I believe that there is such a thing. But I
think that it is unfortunate for the advocate of the ratio analysis who also
believes there is such a thing, that her advocacy forces her into faith in that
contention, even though she may not be sure what chance exactly is either.
The advocate may say that her prior belief in the truth of the ratio analysis
justifies, and indeed implies the truth of the claim that all propositions have
chance values. I find it surprising that seemingly innocent statements about
conditional chance should foist upon us a commitment to a controversial
view about chance. Maybe that view is right; but it is surely not implied by
our prosaic attributions of conditional probability. It is striking that such
an interesting metaphysical conclusion can be derived from such a humble
starting point.

If chance is left unanalyzed, then we are left totally in the dark as to
why it should attach to every proposition. If it is analyzed as a ‘propensity’
or a ‘disposition’, then this only redescribes the problem: why should we
believe that every proposition has a propensity/disposition? And if it is
analyzed as relative frequency in the infinite long run, then it seems that
we can make sure that it doesn’t attach to every proposition. To see this, we
can exploit the freedom of the act of tossing the coin. Suppose that each
day I can either (fairly) toss the coin or not, and imagine a hypothetical
infinite sequence of such trials, each of which involves my free choice.
Now suppose that I deliberately make a sequence of choices so that the
successive relative frequencies of ‘I toss the coin’ days, over the total
number of days, fluctuates wildly. Here is one such sequence, in which
I toss the coin, then do not toss the coin, for runs of exactly 2n consecutive
days (abbreviating ‘Toss’ by ‘T ’):

T T̄ T T T̄ T̄ T T T T T̄ T̄ T̄ T̄ T T T T T T T T T̄ T̄ T̄ T̄ T̄ T̄ T̄ T̄ . . . .

The relative frequency of T -days does not approach a limit, so by a relative
frequency analysis of chance, the probability of T is not defined. And
yet corresponding conditional probabilities can be defined, as (limits of)
relative frequencies. For example, the probability of T , given T , is 1: the
(limiting) relative frequency of T -days among T -days is 1.

We have here in turn an argument for thinking that at least some free
acts could lack chance values. For as I said earlier, while we should not
identify chance with relative frequency, still the latter is typically a good
guide to the former. The fact that we can in principle guarantee that our
free choices fail to yield a convergent relative frequency suggests to me
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that these choices could be chance gaps. Admittedly, there are difficulties
here in defining a kind of trial, and perhaps we might want to say instead
that it is the entire sequence that gets assigned a chance, namely 1; and
there are thorny issues in the compatibilist/incompatibilist debate that I
cannot get into here. But to repeat, it is the friend of the ratio, and not I,
who must take a stand on the matter.

There is always, of course, the bullet-biting reply: we have no assurance
that the probability of Heads, given Toss, is defined after all. More gener-
ally, the reply has it that all chances conditional on free acts are undefined
if the acts themselves lack chance values. But as we will see in the next
section, yet again the bullet is not so easily bitten.

8. EXAMPLES FROM SCIENCE AND PHILOSOPHY

I have given what I take to be clearly the right values to the conditional
probabilities in these various examples, and the many people whom I have
asked almost invariably give the same answers. I take this to be indicat-
ive of some broadly shared notion, derived from commonsense, though
refined by philosophical reflection; and while such notions are defeasible
to be sure, they should not be given up lightly. But I do not want to rest
my case on intuitions, widely shared or otherwise, refined or otherwise.
So let us now turn to various examples drawn from actual scientific and
philosophical practice in which conditional probabilities are defined even
when the corresponding unconditional probabilities may not be. The first
example concerns putatively objective probabilities; the second concerns
both objective and subjective probabilities; the rest concern subjective
probabilities. They are far from exhaustive.

8.1. Quantum Mechanical Probabilities

Quantum mechanics apparently tells us that certain chances, conditional
on free acts, are defined, and it even purports to tell us their values. For
example, it tells us that the chance that a certain particle is measured to be
spin-up, given that it is measured for spin in a given direction, is 1/2; and
the condition surely involves a free choice. Recall the response that I have
called “biting the bullet” when (RATIO) goes undefined. Here it would be
that quantum mechanics may actually be incorrect in its attribution of well-
defined conditional probabilities to the results of certain measurements,
because these probabilities may in fact be undefined. But, to understate the
point, if these probabilities are undefined, one wonders why the statistics
from the laboratory confirm the quantum mechanical probabilities so well,
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or indeed why those statistics should have any stability at all. Needless to
say, I am underimpressed by such armchair suspicion of one of our best
scientific theories.

Let me elaborate. A species of conditional probability makes its way
into quantum mechanics via the Born rule. In its simplest form, this rule
has three essential elements: a proposition M about some measurement
taking place on a system (in a certain state); a proposition Ok about which
outcome of this measurement eventuates; and a probability assignment
pk to this outcome proposition, conditional on the measurement. If this
conditional probability is not to be analyzed by the ratio formula, then my
point is already made. But it is commonly thought that it should be so
analyzed:21

P(Ok | M) = P(Ok ∩ M)

P(M)
= pk.

This conditional probability is standardly regarded as being objective.
Again, for this to be correct, the probabilities that appear in the numerator
and denominator must be well-defined.

Quantum mechanics itself does not provide these probabilities.22 For
example, it does not give probabilities to propositions of the form ‘meas-
urement X is performed by an experimenter’.23 Perhaps you think other-
wise: “Quantum mechanics does ultimately provide probabilities for such
measurements being performed – for an experimenter is just a large col-
lection of atoms, and is thus a (hugely complicated) quantum system.
Likewise the measurement apparatus; likewise the combined system of
experimenter plus measurement apparatus . . . ” But I contend that quantum
mechanics cannot deliver even in principle probabilities of the form P(M).
I have two reasons for saying this.

Firstly, quantum mechanics only delivers further conditional probabil-
ities, according to Born’s rule, of the very form that the ratio was supposed
to analyze. It does not assign values to any unconditional probabilities of
the form P(X), irrespective of what X is; a fortiori it does not assign
values to unconditional probabilities of the special form P(M).

Secondly, let us not forget just how special the M propositions are. They
are propositions about measurement processes, and so assigning a prob-
ability to them may be especially problematic. While Born’s rule assigns
(conditional) probabilities to measurement outcomes, it surely does not as-
sign probabilities (conditional or unconditional) to the processes that lead
to those outcomes. Indeed, the latter would seem to require the assignment
of probabilities by Born’s rule to the decisions of physicists as to whether
or not the relevant measurements are performed! Is any such decision itself
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the outcome of some further ‘super-measurement’, as standard interpret-
ations of quantum mechanics would seem to require? This not only cries
out for an account of super-measurement (for it is prima facie implausible
that there are such processes, or at least unclear what they would be), but
it also adds bite to the measurement problem. After all, until this super-
measurement is made, the physicist should be in a superposition of two
states, namely ‘decides to perform’ and ‘decides not to perform’. This
hardly accords with the facts as we take them to be. In any case, how are we
to analyze these putative conditional probabilities of the form “the prob-
ability that measurement X takes place, given super-measurement S takes
place”? The ratio analysis would commit us to unconditional probabilities
of the form P (super-measurement S takes place). Infinite regress threatens
if we try to derive these in turn from Born’s rule – for it seems we must now
invoke ‘super-super-measurements’, of which super-measurements are the
outcomes, and so on.

The advocate of the ratio analysis may concede these points, but may
insist nonetheless that these unconditional probabilities really do exist, and
yield the correct ratios, even though quantum mechanics itself does not
provide them. For example, most of the main solutions to the measurement
problem (Bohm’s interpretation, collapse interpretations, the many worlds
interpretation, and so on) have the consequence that probabilities for meas-
urements taking place are well-defined. I say “most” – instrumentalists
about quantum mechanics, who say roughly that it is just a calculational
device, and that it is not intended to provide a complete description of the
physical, can agree that it yields conditional probabilities without there
necessarily being any probability for the condition M.24 Still, the advocate
insists, if any of the other main solutions is correct, this problem for the
ratio analysis is solved.

I have two replies to this. The first you have already seen. M is typ-
ically a proposition about the (apparently) free act of an experimenter –
whether or not he or she orients a Stern-Gerlach apparatus a certain way,
and prepares a particle in a suitable state, and so on. As such, M may not
have a chance value at all. Or it may. But whether it does or not is contro-
versial, not agreed upon on by all interpretations of quantum mechanics,
and certainly not something that the ratio formula by itself can settle. It
seems to me that the intuition that chances must always exist, even for free
acts, parallels the intuition that values for observables (such as position and
momentum) must always exist. But the latter intuition has been challenged
since Bohr, and has hit particularly hard times since the Kochen-Specker
theorem.
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Secondly, if P(M) has some determinate value, then this a macroscopic
fact that is seemingly not reducible to the facts that quantum mechanics
describes. If that theory is a complete description of the microscopic realm,
then it seems that we have macroscopic facts that are not reducible to
microscopic facts. So it seems that the ratio analysis commits us either to
the incompleteness of quantum mechanics as a theory of the microscopic
world (move over, Einstein, Podolsky and Rosen!), or to the existence of
macroscopic facts that cannot be reduced to microscopic facts. Either way,
we find an empirical consequence of the ratio analysis of Born’s rule that
we may prefer not to have foisted upon us. Quantum mechanics is thought
by many to be a complete theory of the micro-physical; and it is natural
to think of macroscopic facts as large conjunctions of microscopic facts.
At any rate, if these positions are to be ruled out, that is the job of nature,
not of conceptual analysis, let alone conceptual analysis of the concept of
conditional probability.

8.2. Probabilistic Causation

There is something appealing to the idea that causes raise the prob-
abilities of their effects. And it is appealing to express this idea in
terms of inequalities among conditional probabilities. The simple-minded
formulation

A causes B iff P (B, given A) > P (B, given not-A)

cannot be quite right (witness spurious correlations and the asymmetry of
the causal relation), even though it is already a substantial step in the right
direction. We may go on to refine it in various ways, for example:

A causes B iff P (B, given A ∩ X) > P (B, given not-A ∩ X)
for every member X of some ‘suitable’ partition . . .

The exact details are not important for my point. What is important is that
many authors have used the ratio formula for such conditional probabilities
(see e.g., Suppes 1970; Cartwright 1979; Salmon 1980; Eells 1991). This,
in turn, commits them to the existence and sharpness of the corresponding
unconditional probabilities – an implausible commitment. You and I know
that smoking causes lung cancer – in some appropriately formulated sense,
the probability that I get lung cancer, given that I smoke, is greater than
the probability of lung cancer, given that I do not smoke. We know it,
even though we may assign no probability to the proposition that I smoke.
Indeed, we could make similar causal claims about our coin-tossing friend
Joe.
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8.3. The Semantics of Indicative Conditionals: Adams’ Thesis

Huw Price (1986) notes the wide acceptance of Adams’ Thesis that the
assertability of an indicative conditional goes by the subjective conditional
probability of the consequent, given the antecedent. For example, I regard
as highly assertable the conditional ‘if it is raining in Moscow, the ground
in Moscow is wet’ because I assign high conditional credence to the ground
in Moscow being wet, given that it is raining in Moscow. Price goes on to
argue that the truth of Adams’ Thesis is inconsistent with (RATIO):

For it entails that a person cannot properly be in a position to assent to an indicative
conditional unless they hold some degree of confidence in the antecedent and in the con-
junction of the antecedent and the consequent (leaving aside the requirement that these two
degrees stand in an appropriate ratio). Whereas in fact, of course, we often feel perfectly
justified in assenting to such a conditional when we simply have no opinion as to whether
the antecedent is true . . . I think it is clear that forming a considered judgement about an
indicative conditional need not involve forming such a judgement about its antecedent. The
conditional answers to different standards; which means that if assent to the conditional
goes by conditional credence, conditional credence does not go by [RATIO]. (21)

The subjective conditional credence of the consequent C, given the ante-
cedent A, that figures in Adams’ Thesis is invariably represented by the
ratio P(C |A). As Price observes, this requires the corresponding uncondi-
tional credences to be defined. Yet we frequently can judge the assertability
of an indicative conditional in complete absence of such credences – I can
regard the conditional concerning Moscow as assertable without assigning
a degree of belief to ‘it is raining in Moscow’. It follows, then, either that
this assertability does not go by the conditional credence after all, or that
the conditional credence does not goes by the ratio. But Adams’ Thesis
is thought to sound right, and to accord with our intuitions about a wide
range of cases. What sounds right and so accords, I suggest, is equating
the assertability of the conditional to the corresponding conditional cre-
dence; it is the further equating of this conditional credence with a ratio of
credences, then, that is the culprit.

8.4. Decision Theory and Game Theory

Decision theory tells you how your beliefs and desires in tandem determine
what you should do. It combines your utility function U and your probab-
ility function P to give a figure of merit for each possible action, called
the expectation, or desirability of that action. Let the possible outcomes be
{Oj }, and your possible actions {Ai}. Evidential decision theory, as presen-
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ted by Jeffrey (1983b), explicitly uses the ratio analysis in its expectation
formula:

Desirability(Ai) =
∑

j

U(Oj ∩ Ai).P (Oj |Ai).

But it is not part of that theory that you assign probabilities to the actions
Ai themselves. Indeed, certain authors are quite explicit that you need not,
and even cannot assign them probabilities. Price puts it this way: “It is
absurd to suppose that in deciding whether to act in a certain way, an agent
makes (or should make) use of a degree of confidence that he or she will
so act” (22). Edgington (1995) echoes these remarks:

. . . we often have a degree of belief in B given A when we have not determined what we
think about A. One important case is when I am deliberating about what to do: A has the
form “I do x”, and B is a possible consequence of doing x. It would be absurd to hold that
I have to figure out how likely it is that I will do x, before I can arrive at a judgement [P (B,
given A)]. (266)

Mellor (1993, p. 236) makes much the same point. Kyburg (1988, p. 80)
goes further, contending that “to the extent that I am actually making a
choice, I must regard that choice as free . . . ” In doing so, he continues, I
cannot assign probabilities to my acting in one way rather than another
(even though onlookers may be able to do so). Spohn (1977), Gilboa
(1994), and Levi (1997) all argue for variants of this position. It is unclear,
for example, how one can make sense of non-trivial subjective probabilities
of one’s future actions on the betting interpretation: one’s fair price for a
bet on such an action ought to collapse to 0 or 1. If these authors are right,
then the conditional probabilities that appear in the expectation formula
are not to be evaluated by the ratio formula.

Similar points carry across to game theory, in which outcomes are de-
termined partly by the actions of other players. While you have subjective
probabilities over the actions of all the other players in a given game
(according to the subjectivist interpretation of the Nash equilibrium), you
need not, and perhaps cannot have probabilities over your own actions.
Nonetheless, conditional probabilities for the various outcomes, given your
own actions, are still well-defined.

8.5. Expert Probabilities

We are often guided by the opinions of experts. We consult our doctors on
medical matters, our weather forecasters on meteorological matters, and
so on. Gaifman (1988) coins the terms “expert assignment” and “expert
probability” for a probability assignment that a given agent strives to track:
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“The mere knowledge of the [expert] assignment will make the agent adopt
it as his subjective probability” (193). This idea may be codified as follows:

(Expert) P(A | pr(A) = x) = x, for all x such that P(pr(A) =
x) > 0,

where ‘P ’ is the agent’s subjective probability function, and ‘pr(A)’ is the
assignment that the agent regards as expert. For example, if you regard the
local weather forecaster as an expert on your local weather, and he assigns
probability 0.1 to it raining tomorrow, then you may well follow suit:

P (rain | pr(rain) = 0.1) = 0.1.

More generally, we might speak of an entire probability function as being
such a guide for an agent over a specified set of propositions. Van Fraassen
(1989, p. 198) gives us this definition: “If P is my personal probability
function, then q is an expert function for me concerning family F of pro-
positions exactly if P(A | q(A) = x) = x for all propositions A in family
F ”.

Let us define a universal expert function for a given rational agent as
one that would guide all of that agent’s probability assignments in this
way: an expert function for the agent concerning all propositions. Van
Fraassen (1984, 1995), following Goldstein (1983), argues that an agent’s
future probability functions are universal expert functions for that agent.
He enshrines this idea in his Reflection Principle, where Pt is the agent’s
probability function at time t , and Pt+� is her function at a later time t+�:

Pt(A |Pt+�(A) = x) = x, for all A and for all x such that
Pt(Pt+�(A) = x) > 0.

The principle reflects a certain demand for diachronic coherence imposed
by rationality. Van Fraassen (1984, 1995a) defends it with a diachronic
Dutch Book argument, and by analogizing violations of it to the sort of
pragmatic inconsistency that one finds in Moore’s paradox.

We may go still further. There may be universal expert functions for
all rational agents. Let us call such a function a universal expert function,
without any relativization to an agent. The Principle of Direct Probability
regards the relative frequency function as a universal expert function. Let
A be an event-type, and let relfreq(A) be the relative frequency of A. Then
for any rational agent with probability function P , we have

P(A | relfreq(A) = x) = x, for all A and for all x such that
P (relfreq(A) = x) > 0.
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(Cf. Hacking 1965.)
Lewis (1980) posits a similar universal expert role for the objective

chance function, ch, in his Principal Principle:

P(A | ch(A) = x) = x, for all A and for all x such that
P (ch(A) = x) > 0.25

A frequentist who thinks that chances just are relative frequencies would
presumably think that the Principal Principle just is the Principle of Direct
Probability; but Lewis’ principle may well appeal to those who have a very
different view about chances – e.g., propensity theorists.

I have so far followed these authors in presenting these constraints in
terms of the ratio analysis. But what is intended, of course, are constraints
on conditional probabilities of the form P (A, given q(A) = x) = x. Con-
sider again the Reflection Principle. This constraint presumably obtains
whether or not you assign sharp unconditional probabilities to propositions
about the values of Pt+�(A) for every A. Dutch bookies cannot fleece you
for failing to assign such probabilities; there is no pragmatic inconsistency
in failing to assign such probabilities. The Reflection Principle, then, may
well be a constraint on conditional probability assignments, but I doubt
that it is a constraint on ratios of unconditional probability assignments.

Or consider again the Principal Principle. It is not at all clear that
rationality demands that, for every A and for every x, a certain ratio of
unconditional probabilities take a particular value:

P(A ∩ ch(A) = x)

P (ch(A) = x)
= x.

It isn’t just that written this way, as a rather complicated ratio of probab-
ilities, the Principal Principle loses its immediate plausibility (though that
too is true). The principle is presumably a constraint on rational opinion,
whether or not you assign sharp unconditional probabilities to propositions
about the values of ch(A). Moreover, I doubt that it is a constraint on
rational opinion that you assign such probabilities.

And so it goes. The ratio analysis misrepresents the commitments we
undertake when we regard various probability assignments, or functions,
as experts.

9. THE RATIO: BAD ANALYSIS, GOOD CONSTRAINT

Let us pause for a moment to take stock. My strategy has been to try to
push proponents of the ratio analysis into corners that they might rather
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not occupy. Along the way, I have had my various imaginary – and in
some cases, real-life – respondents find that their commitment to the ratio
analysis has also committed them to saying such things as:

• “the chance function (at any given time) is regular, or conditional
chances of the form P (X, given Z) are never defined when P(Z) =
0”;

• “all rational credence functions are regular, or for all rational credence
functions P , conditional probabilities of the form P (X, given Z) are
never defined when P(Z) = 0”;

• “Kolmogorov’s axiomatization of unconditional probability should be
rejected”;

• “total ignorance should be modeled with sharp probability rather than
with probability gaps”;

• “vague probability should be outlawed”;
• “there is no such thing as a uniform distribution over [0, 1]”;
• “there are no chance value gaps”;
• “either quantum mechanics is incomplete as a theory of the micro-

scopic world, or there exist macroscopic facts that cannot be reduced
to microscopic facts”;

• “rationality requires one to assign probabilities to:

– all events that figure in causal relations that one recognizes;
– the antecedents of all the indicative conditionals whose assertabil-

ity we can judge;
– all of one’s own future choices among which one is deciding;
– all propositions about one’s expert assignments: all propositions

about one’s own future probability assignments; all propositions
about the values of the chance function at any given time; and so
on”.

This completes my critique of the ratio as an analysis of conditional
probability. I have identified four varieties of trouble spots for the ratio
analysis: zero probability assignments, infinitesimal assignments, vague
probability assignments, and no probability assignment whatsoever. They
correspond in turn to each of the horns in the Four Horn theorem, which
thus unifies them.

Consider again the ‘no probability assignment whatsoever’ trouble
spots. I have argued that the probability of A given B can be defined
without P(A ∩ B) or P(B) being defined, so we should reject the ratio
analysis. But you may wonder whether my argument proves too much.
Can’t we run a parallel argument against virtually every theorem of prob-
ability? For example, a rational agent can assign P(A) a well-defined
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value, without assigning any values whatsoever to P(A ∩ B) and to
P(A ∩ ¬B). Shouldn’t we then reject the theorem of probability that P(A)
= P(A ∩ B) + P(A ∩ ¬B)? After all, there are cases in which the left-
hand side is defined, the right-hand side is undefined, and ‘defined’ does
not equal ‘undefined’!26

This parallel argument does not prove too much; rather, it proves ex-
actly enough: P(A ∩ B) + P(A ∩ ¬B) is no analysis of P(A). What
this theorem, and all the other theorems of probability provide, are con-
straints: when all the terms that appear in the theorem are defined, they
must conform to that theorem. If, on the other hand, some of the terms are
undefined, then what we have is not a violation of the theorem, but rather
a non-instance – something that simply does not fall under the theorem.

Perhaps the relevant lesson carries over to conditional probability:
while the ratio does not provide an analysis of conditional probability,
perhaps it does provide a constraint on rational opinion and on chance.
It tells us is that whenever P(A ∩ B) and P(B) are sharply defined, and
P(B) is non-zero, then the probability of A given B is constrained to be
their ratio.

My attack on the ratio, seen as an analysis, exploited examples in
which these conditions failed to be met. Nevertheless, the ratio might be
thought of as a successful partial analysis, one that works for an important
sub-class of conditional probabilities, in which the conditions are met.
A sufficient condition for a conditional probability to equal a particular
value is for the corresponding ratio to equal that value. However, it is not a
necessary condition: a conditional probability can equal a particular value
without the corresponding ratio equaling that value. At best, this leaves un-
finished the project of giving a correct analysis of conditional probability
(one that would seem to be particularly pressing in the cases of the Born
rule, probabilistic causation, and so on).

But perhaps the very project of analyzing conditional probability was
misguided from the start.

10. WHAT CONDITIONAL PROBABILITY COULD BE

A few years ago, a television commercial for Twix bars showed a school-
teacher in front of a bored class. The teacher asked the students: “Who can
tell me the formula for conditional probability?” (Nobody answered – they
ate Twix bars instead.) I have argued that the ratio formula does not give an
adequate answer to this question. The bulk of this paper thus far has been
negative; I want now to conclude more positively.
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The various examples that I have considered show that often assign-
ments of conditional probability are basic and immediate. They can, and
in some cases must, stand without support from corresponding uncon-
ditional probabilities. We saw this in examples based on intuition, on
scientific practice, and philosophical practice. Time and time again we
found ourselves endorsing various intuitions, or scientific or philosoph-
ical theories, that committed us directly to specific values or constraints
on conditional probabilities, apparently in the absence of the putative
unconditional probabilities.

Moreover, the examples of vague and undefined probabilities suggest
that the problem with the ratio analysis is not that it is a ratio analysis, as
opposed to some other function of unconditional probabilities. The prob-
lem lies in the very attempt to analyze conditional probabilities in terms
of unconditional probabilities at all. It seems that any other putative ana-
lysis that treated unconditional probability as more basic than conditional
probability would meet a similar fate – as Kolmogorov’s elaboration (RV)
did.

On the other hand, given an unconditional probability, there is always
a corresponding conditional probability lurking in the background. Your
assignment of 1/2 to the coin landing heads superficially seems uncon-
ditional; but really it is conditional on tacit assumptions about the coin,
the toss, the immediate environment, and so on. In fact, it is conditional
on your total evidence. Furthermore, we can be sure that there can be no
analogue of my argument, that conditional probabilities can be defined
even when the corresponding unconditional probabilities are not, that runs
the other way. For whenever an unconditional probability P(X) is defined,
it trivially equals the conditional probability P (X, given T), where T
is necessary. Unconditional probabilities are special cases of conditional
probabilities.

Putting these facts together, we should regard conditional probability
as conceptually prior to unconditional probability. So I suggest that we
reverse the traditional direction of analysis: regard conditional probability
to be the primitive notion, and unconditional probability as the derivative
notion. I am effectively advocating a return to the views of some of the
great figures in the philosophy of probability from yesteryear: among oth-
ers, Johnson (1921), Keynes (1921), Carnap (1952), Jeffreys (1961), and
de Finetti (1974, reprinted 1990). Their insights seem to have been over-
looked or forgotten by many along the way, partly thanks to the hegemony
of Kolmogorov’s approach, I daresay. Indeed, de Finetti (1990, p. 134)
forcefully contends not only that conditional probability is the primitive
notion, but that in an important sense, all probability is conditional: “every
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prevision, and, in particular, every evaluation of probability, is conditional;
not only on the mentality or psychology of the individual involved, at the
time in question, but also, and especially, on the state of information in
which he finds himself at that moment”.

What’s more, thanks to authors such as Popper (1959b, 1992), Renyi
(1970), van Fraassen (1995b), Spohn (1986) and Roeper and Leblanc
(1999) we have axiomatizations of conditional probability ready to hand
(although I do not want to insist that they are the last words on the sub-
ject either). They were, I think, motivated particularly by the problem
of conditions with probability zero, although I suggest that the problems
of conditions with vague or undefined probabilities provide at least as
much motivation. There is now no difficulty, for example, in upholding
the self-evident truth that the conditional probability of any (non-empty)
proposition, given itself, is 1 – even for previously troublesome cases such
as these. One can simply lay down an axiom to that effect.

Looking at Popper’s system, the axiom of particular interest is the
multiplication axiom, which in our notation is:

P(A ∩ B, given C) = P(A, given B ∩ C).P (B, given C).

(The other axiomatizations have analogous axioms.) Let C be neces-
sary, and identify probability conditional on C with the corresponding
unconditional probability. Then we have:

P(A ∩ B) = P(A, given B).P (B).

That is, we recover the analogue of (PRODUCT) in Section 4.5. When
P(B) > 0, of course, we can rearrange this to get the analogue of (RA-
TIO). We recover what was right about the ratio analysis, while allowing
us to go beyond it, giving the answers we want in the places where it breaks
down.

So, returning to the question asked by the teacher in the Twix bar
commercial, I want to conclude by rejecting the presupposition behind the
question. There is no adequate formula for conditional probability, since it
is the fundamental concept in probability theory.
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NOTES

1 Kolmogorov went on to develop a more sophisticated approach to conditional probab-
ility using the notion of conditional probability as a random variable. I will return to this
approach in Section 4.5.
2 Modulo Kolmogorov’s more sophisticated formulation of conditional probability, to be
discussed later.
3 Analogies are easily multiplied. The material conditional A ⊃ B is defined via the truth
table for ¬A ∨ B. But it would be specious to claim that the conditional ‘if . . . then’ in
English is defined via that truth table – whether or not ‘⊃’ adequately analyzes ‘if . . . then’
is a substantive question. Or simply consider unconditional probability. Kolmogorov, I said,
gave us a certain axiomatization of the concept, but it would be specious to claim that his
axioms are definitive of the concept. If they were, someone like de Finetti who disputes
the axiomatization would simply appear foolish or ignorant, like someone disputing the
definition of the material conditional. ‘Conditional probability’, like ‘if . . . then’, like ‘un-
conditional probability’, and unlike ‘material conditional’ is a pre-theoretical concept of
ours.

Despite the different subject matter, my comments echo ones made by Tarski (1956,
1983) in his seminal paper on logical consequence: “The concept of logical consequence
is one of those whose introduction into the field of strict formal investigation was not a
matter of arbitrary decision on the part of this or that investigator; . . . efforts were made to
adhere to the common usage of the language of everyday life” (1983, p. 409). I believe that
the concept of conditional probability is at least as ensconced in “the language of everyday
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life” as is the concept of logical consequence. And I take my critique of the ratio analysis
to be analogous in spirit to Etchemendy’s (1990) critique of Tarski’s analysis of logical
consequence.

I should mention two allies in my campaign. Dorothy Edgington (1996, p. 621), writes
in connection with the so-called “definition” of conditional probability: “Axiomatizations
are not the life-blood of a theory. Their “definitions” have to fit pre-axiomatic working
concepts”. And Judea Pearl (1988, p. 70) contends that “Kolmogorov’s axiomatization of
probability is responsible for the unfortunate tradition of treating [(RATIO)] as a definition
of conditional probability, rather than a theorem that follows from more primitive axioms
about conditioning”.
4 For more on the need to distinguish subjective and objective probability, see for example
Lewis (1980).
5 This would certainly seem to be a live possibility on a Mill–Ramsey–Lewis style account
of laws as regularities that appear as theorems in a ‘best’ theory of the universe, as long
as the criteria for what makes one theory better than another are themselves vague. (In
Lewis’ 1973 theory, for instance, the vagueness may enter in the standards for balancing
the theoretical virtues of ‘simplicity’ and ‘strength’.) Then nature may not determine a
single best theory, but rather a multiplicity of such theories. Suppose, for example, that
these equal-best theories disagree on the chance that a radium atom decays in 1500 years:
for each real number r in the interval [1/3, 2/3], there is such a theory that says that the
chance is r . Then we might say that the chance of this event is vague over this interval.

There may be even more straightforward ways for the laws of nature to be vague.
Perhaps some of the fundamental physical constants are not entirely precise – perhaps,
for example, the gravitational constant is only fixed up to 100 decimal places. Or some of
the fundamental physical properties might be vague. It would seem that the laws in which
such constants or properties figure would then be rendered vague.
6 A more complete introduction to non-standard analysis and infinitesimal probabilities
can be found in Skyrms (1980) and (1995). My discussion here follows his (1995).
7 De Finetti (1972) imagines regarding each of a denumerable collection of rival hypo-
theses as equally probable. He argues that each hypothesis should receive probability 0, yet
the disjunction of all of them should receive probability 1. This is thus at once an argument
against countable additivity, and against regularity; we will later see it providing an argu-
ment against the ratio analysis as well. Levi (1978) considers a continuum of hypotheses
hp , each asserting that the chance that a given coin lands heads is p, for each p in [0, 1].
Suppose an agent’s state of opinion is represented by a continuous density function over
the various possible values of p. Then the agent assigns probability 0 to each value of p,
yet regards each value as a serious possibility. Here countable additivity can be obeyed,
even though regularity is violated; and again, Levi turns it into an argument against what I
am calling the ratio analysis.
8 I am grateful to Matthias Hild, Christopher Hitchcock, Ben Miller and Peter Vranas,
whose comments helped me streamline this section.
9 See for instance de Finetti (1972) and Levi (1978). Return to their examples in footnote
7. In de Finetti’s example, let E be a disjunction of some finite collection of the hypotheses,
and let H be a member of this collection. P (H, given E) should be defined, even though
P(E) = 0. In Levi’s example, P(coin lands heads, given hp) should be p, even though
P(hp) = 0.
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I hasten to add that the zero denominator problem is a problem for the ratio analysis
of conditional probability, and not for Kolmogorov’s more sophisticated analysis – see
Section 4.5 – which tackles the problem head-on. It will face other problems.
10 I thank Michael Thau for this point.
11 This elaboration is not without its critics, though. It requires P to be countably, and not
merely finitely, additive, so it is not welcomed by critics of countable additivity such as de
Finetti. Moreover, there are infinitely many candidates for the name ‘P(A ‖ F )’, for if the
random variable f is one and P(g = f ) = 1 (g and f agree ‘almost everywhere’), then
g is another. So the notation ‘P(A ‖ F )’ merely denotes some one of the functions that
satisfy (RV). Finally, getting the ‘right’ answers for the conditional probabilities requires
one to choose the sub-σ -fields judiciously, and different choices can yield different answers
to the same question.
12 There are exceptions. A notable one is Seidenfeld (e.g., 2001), who has studied some of
the ramifications of the analysis in detail. See also Seidenfeld et al. (2001).
13 I am grateful to Adam Elga, Chris Hitchcock, Wilhelm Luxemburg, Vann McGee, Ben
Miller, Brian Skyrms, and Michael Thau for very helpful discussion here.
14 Modulo the caveat that one might not think that a function that violates countable
additivity deserves the name ‘probability function’.
15 I have in mind here the infinitesimals of non-standard analysis, à la Robinson. I admit
that this leaves open the possibility that some other construction of infinitesimals might
solve this problem.
16 Paralleling my caveat regarding infinitesimals in the previous footnote, I admit that my
argument leaves open whether other ways of modeling vague probability are susceptible
to the same objections.
17 I thank Michael Thau for pointing this out to me.
18 Price (1986), Mellor (1993), and Edgington (1995) all make versions of the point that
there are cases in which conditional probabilities are defined while the corresponding
unconditional probabilities happen not to be defined. But they make this point only for
subjective probability. And I will make the stronger point: there are such cases in which the
corresponding unconditional probabilities cannot be defined. I will discuss their arguments
further in Sections 8.3 and 8.4.
19 I take it that it is just such a position that Price (1986) considers (and rejects, though
for different reasons to mine), namely: “. . . thinking of a conditional credence as a full
belief about the ratio . . . On this view a person might hold the conditional credence – the
belief about the ratio – without the associated absolute credences. It would simply be like
believing that one thing was twice as long as another without knowing the length of each”
(20).
20 I am grateful to Adam Elga for this point.
21 Exact formulations vary, but not in ways that count against my claim here. Some authors
restrict the condition M to the choice of measurement, and index the probability function
according to the state of the system. For example, Jarrett (1989, p. 66) considers conditional
probabilities in a Bell experiment of the form Pλ

A
(x | i, j, y), where λ is the state of the two

particle system, x and y are the outcomes, and i and j are the switch settings at the ends of
the experiment (of which A is one). Here i and j correspond to choices of measurements
of certain spin observables, so they play the same role as M does in my formulation. For
what I take to be similar allegiance to the ratio analysis, see for example Fine (1989) and
Howard (1989).
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Also, it is standard practice to express quantum mechanics’ transition probabilities in
terms of the ratio analysis (see e.g. van Fraassen 1991, p. 117). I think that this practice is
equally questionable.
22 When I speak of “quantum mechanics itself”, I mean the uninterpreted theory – that
which all interpretations of quantum mechanics agree on.
23 A measurement is typically performed by some experimenter manipulating some piece
of apparatus – although my arguments will assume only that some measurements are like
this.
24 Here I am grateful to Ned Hall for helpful discussion.
25 There are subtleties that I cannot go into here, including the notion of admissibility, the
relativity of chances to times, and Lewis’ (1994b) revised version of the Principle. These
subtleties will not affect my main point.
26 I thank John Barker and (independently) Christian Piller for putting this objection to
me.
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