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1. THE ULTIMATUM GAME 

Consider two players with a dollar to divide. The rules of the U l t i m a t u m  
G a m e  specify that player I begins by making an offer of x ~ [0, 1] to 
player II, who then accepts or refuses. If player II accepts, player I gets 
I - x and player II gets x. If player II refuses, both get nothing. Traditional 
game theory predicts that the play of this game will result in the unique 
subgame-perfect equilibrium in which player II plans to accept whatever 
she is offered and player I offers player II nothing. J 

In the first of many experiments on this and related games by numerous 
authors, Giath et al. (1982) found that the modal offer was ½ and that player 
I had roughly half a chance of being rejected if he offered about ] of the 
sum of money available. Binmore et  al. (1989) reported qualitatively simi- 
lar results in their replication of the Ultimatum Game experiment. There 
have been many related studies in the interim, surveyed by Bolton and 
Zwick (1993), Giath and Tietz (1990), Roth (1994), and Thaler (1988). 

Critics of traditional game theory have quoted these results (along with 
the early results on the finitely repeated Prisoners' Dilemma and games 
involving the private provision of public goods) as demonstrating that the 
optimizing paradigm on which game theory is based is fundamentally 
mistaken. Instead, so the story goes, people simply honor whatever social 
norm is appropriate to the situation. Frank (1988) is particularly eloquent 
on this subject. In bargaining games, for example, it is popular to assert 
that people "just play fair." 

Many game theorists have responded by dismissing laboratory results as 
irrelevant to actual behavior. We agree that the results of poorly designed 
experiments are irrelevant. Binmore (1992, p. 51) stresses that an experi- 
mentalist or game theorist should be cautious about making predictions 
unless the following criteria are satisfied: 2 

• The game is reasonably simple; 

• The incentives are adequate; 

• Sufficient opportunity for trial-and-error learning is provided. 

I If offers must be made in whole numbers of cents, other subgame-perfect equilibria also 
exist, but player II never gets more than one cent in any of these. 

2 As experimental techniques in economics have become increasingly sophisticated, the 
importance of these factors has come to the fore. As advocated by Smith (1991), it is now 
commonplace to offer experimental subjects large incentives instead of the negligible amounts 
considered appropriate by many psychologists. At the same time, the introduction of com- 
puter technology has made it possible to use interactive demonstrations to teach subjects 
the rules of the game quickly and efficiently and to give the subjects the experience of large 
numbers of repetitions of the game. A survey to Ledyard (1992) of recent experiments 
concerning the private provision of public goods is revealing. In experiment after experiment, 
subjects are reported to approach the game-theoretic equilibrium as the incentives increase 
and the subjects' experience with the game becomes extensive. 



58 GALE, BINMORE, AND SAMUELSON 

On the other hand, game theorists cannot ignore experiments that persis- 
tently refute their predictions when all three criteria are satisfied. In the 
case of the Ultimatum Game, the relevant experiments have been repli- 
cated too often for doubts about the data to persist. A theory predicting 
that real people will use the subgame-perfect equilibrium in the Ultimatum 
Game is therefore open to question. 

At first glance, the case for subgame-perfection in the Ultimatum Game 
seems ironclad. This is a two-player game of perfect information in which 
each player moves only once. 3 Player I need only believe that player II 
will not play a weakly dominated strategy to arrive at the subgame-perfect 
offer. But the deletion of weakly dominated strategies is an eductive 
principle (cf. Binmore (1987, 1988)), whereas we believe that the principles 
to which one must appeal when predicting actual behavior, in the labora- 
tory or elsewhere, are almost always evolutive in character. That is to 
say, the outcomes we observe are not the product of careful reasoning 
but of trial-and-error learning. 

This paper demonstrates that interactive learning processes readily lead 
to outcomes in the Ultimatum Game that are Nash equilibria but not 
subgame-perfect. 4 We argue that game theorists were therefore wrong to 
put all their eggs in the subgame-perfect basket when predicting laboratory 
behavior in the Ultimatum Game. A case exists for predicting that inter- 
active learning will result in the selection of one of the other Nash equilibria 
of the game. 

Section 2 begins by showing that if the initial conditions are not too 
close to the subgame-perfect equilibrium, then the replicator dynamics 
can converge to Nash equilibria in the Ultimatum Game that are not 
subgame-perfect. Given the relation between trembles and subgame-per- 
fect equilibria (Selten (1975)), such a result is of interest only if it is robust 
in the presence of relevant perturbations. We therefore introduce noise 
into the replicator dynamics. When this noise is small in absolute terms but 
relatively larger in the population of responders, we find that asymptotic 
attractors survive which are Nash equiibria but not subgame-perfect. But 
why do we expect responders to be noisier than proposers? Our reason 
is to be found in the structure of the Ultimatum Game. When noise levels 
are allowed to depend on the potential cost of making an error, the system 

3 In particular, the criticism that subgame-perfection calls for players to regard their 
opponents as perfectly rational after having received evidence to the contrary (cf. Binmore 
(1987/1988) has no force in the Ultimatum Game. 

4 This finding is not without precedent. Binmore (1990), Samuelson (1988, 1993, 1994), 
and Samuelson and Zhang (1992) give simple examples showing that the deletion of weakly 
dominated strategies is at best a dubious activity in an evolutionary context. 
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can endogenously produce a situation with more noise in the responding 
population. 

Section 3 explains how we think these calculations should be interpreted 
in the light of the experimental data. In the process, we comment on a 
complementary learning-based analysis of the Ultimatum Game due to 
Roth and Erev (1993). We also explain why we expect to see initial condi- 
tions in laboratory experiments that lead the dynamics to equilibria that 
are not subgame-perfect. In particular, we suggest that initial play reflects 
decision rules that have evolved in real-life bargaining situations that are 
superficially similar to the Ultimatum Game. These bargaining games 
generally feature more symmetric allocations of bargaining power than 
the Ultimatum Game, yielding initial play in Ultimatum Game experiments 
that need not be close to the subgame-perfect equilibrium. 

Section 4 discusses how we think (out-of-equilibrium) behavior can 
persist in which people "leave money on the table." This section also 
comments on the use of "fairness" explanations for the outcomes of 
Ultimatum Game experiments. 

The results of Section 2 are established by numerically computing trajec- 
tories for the replicator dynamics. In order to provide some insight into 
the forces that drive these results, Section 5 studies a variant of Selten's 
(1978) Chain-Store Game, which we reinterpret as a two-offer simplifica- 
tion of the Ultimatum Game. In this simpler setting, an analytic study of 
the evolutionary dynamics is possible. The same analysis also provides 
a possible resolution of the well-known chain-store paradox that does not 
require incomplete information assumptions and applies even when only 
one potential entrant exists. 

We employ the replicator dynamics throughout. Why are such biologi- 
cally motivated dynamics relevant? First, Section 6 presents an aspiration- 
level model of learning that leads to the replicator dynamics. Brrgers and 
Sarin (1993), Binmore and Samuelson (1993), Cabrales (1993), and Schlag 
(1994) similarly present learning models that lead to the replicator dynamics, 
suggesting that the replicator dynamics are of more than merely biological 
interest. Second, the analysis of Section 5 isolates the smoothness proper- 
ties of the learning model that drive our results, revealing that qualitatively 
similar results will hold in a wide variety of learning models (including vari- 
ants of Roth and Erev's (1993) model). 

2. NUMERICAL CALCULATIONS 

This section studies a version of the Ultimatum Game. The players 
must split a "pie"  of size 40. The set of offers available to the proposer 
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is I = {1, 2 . . . . .  40}. 5 (Note that an offer i is the amount that player I 
proposes that player II should get rather than the amount player I demands 
for himself.) An action for player II is a choice from the set { Y, N}. Her  
strategies are therefore functions f." {1, 2 . . . . .  40} ~ {Y, N}. However ,  
we assume that player II is restricted to functions of the form f ( i )  = Y 
(i -> j)  and f ( i )  = N (i  < j )  for some j E {1, 2 . . . . .  40}. We can then 
identify player II 's strategy with the minimum acceptable o f fe r j  and the 
set of  pure-strategy pairs can be identified with I x I. The forty pure- 
strategy Nash equilibria are (i, i) (i = 1, 2 . . . . .  40). Since i = 0 is excluded, 
the unique subgame-perfect equilibrium is (1, 1). 

For an evolutionary analysis, we assume that player I is drawn from 
an infinite population of  proposers and that player II is drawn from an 
infinite population of  responders.  The fraction of  proposers who make 
offer i at time t is denoted by x i ( t ) .  The fitness 7ri(t) of a proposer  using 
offer i at time t is taken to be the expected payoff  to a player I who makes 
offer i when his opponent  is drawn at random from the population of  
responders at time t. Average fitness in the population of  proposers at 
time t is ~ l ( t )  = x~( t )cr~( t )  + . . .  + Xa07r40(t). The standard replicator equa- 
tion for the evolution of x~(t) is given by 

-~i = xi(Tri - ~1) i E {1, 2 . . . . .  40}. (1) 

Similarly, we let y j ( t )  be the fraction of  responders playing strategy j at 
time t, with 7rj(t) being the fitness of  a responder using strategy j and 
~ i t ( t )  be the average fitness of  responders,  so that 

pj = yj(rrj  - ~zz) j ~ {1,2 . . . . .  40}. (2) 

The evolution of  the whole system is determined by the 80 equations 
given by (1) and (2). 

In the terminology of  Hofbauer  and Sigmund (1988), every Nash equilib- 
rium is a rest point of the replicator dynamics. 6 It is easy to show that many 
of these Nash equilibria are local attractors. In addition, the calculation 
reported in cell (0, 0) of  Table I shows that, with uniform initial conditions,7 

5 In what seemed crucial cases, we also computed solutions for games with 1 = {1, 2 . . . . .  
100} without significantly altering the results. 

6 A rest  po in t  r is a fixed point of the dynamics. A local  a t t rac tor  I has the property that, 
for each neighborhood V with I ~ V, there is another neighborhood U with I E U C V such 
that any trajectory that begins in U remains in V. An a s y m p t o t i c  a t t rac tor  a is a local 
attractor with the property that all trajectories which begin in a small enough neighborhood 
of a converge to a. 

7 That is, each population begins with each strategy being played by a~of the agents in 
that population. 
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the system converges to an equilibrium in which player II receives a little 
more than 20% of the pie. We therefore have immediate occasion to cast 
doubt on the subgame-perfect prediction in an evolutive context. 

However, it may appear that Nash equilibria which fail to be subgame- 
perfect equilibria are attractors only because the long-run operation of 
the replicator dynamics allows some strategies to approach extinction, 
and hence artificially excludes the evolutionary pressure against weakly 
dominated strategies that would otherwise eliminate them. We therefore 
turn our attention to models in which small fractions of all possible strate- 
gies are continually injected into the population--including those that test 
the "rationality" of responders who refuse positive offers. Only if the 
survival of Nash equilibria that are not subgame-perfect is robust in the 
presence of such noise can we realistically argue against the subgame- 
perfect prediction. 

It is natural to see the noisy model as an evolutionary gloss on Selten's 
(1975) trembling-hand story, which he used to justify subgame-perfect 
equilibria in games like the Ultimatum Game. However, caution is neces- 
sary before pressing the analogy too far. Samuelson and Zhang (1992) 
show that adding noise to the replicator and other evolutionary dynamics 
does not necessarily lead to the elimination of weakly dominated strate- 
gies. The question of whether only subgame-perfect equilibria can survive 
in a noisy evolutionary environment therefore remains open. 

Noise in an interactive learning system may arise in many ways and 
cause perturbations of various types. We therefore think it important to 
be clear on the source of the noise to be studied. 8 This in turn requires 
that we take a little more care than is usual in modeling the agents. 

We envisage an agent as a stimulus-response mechanism with two 
modes of operation: a playing mode and a learning mode. Its playing mode 
operates when it is called upon to choose a strategy in one of a large 
number of games that it repeatedly plays against different opponents. Its 
behavior in each game is triggered by a stimulus that is determined by 
the manner in which the game is framed. (By a "game-frame," we mean 
more than the game itself. We include also the context in which the game 
is encountered and the manner in which its rules are described. 9) When 
it receives such a stimulus s it responds by playing a strategy D(s). If the 
learning mode were absent, an agent could therefore be identified with a 
fixed decision rule D that maps a set of stimuli into a set of strategies. 

8 We depart from that part of the refinement literature which follows Kohlberg and Mertens 
(1986) in demanding robustness in the face of all conceivable perturbations. There is no 
reason to suppose that a system will necessarily be adapted to types of noise that it has 
experienced only rarely if at all. 

9 For example, it may be relevant whether the interacting agents are a monopoly seller 
and a buyer, or whether they are the joint winners of a lottery. 
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However, sometimes an agent will enter its learning mode between games 
to adjust its current decision rule. When learning, it takes a stimulus s 
and some informationfabout the relative success of strategies in the game 
labeled by s to modify the value of D ( s ) .  The learning rule L that it uses 
for this purpose is assumed to be fixed. We restrict our attention to learning 
rules that lead to the replicator dynamics largely because this dynamic 
has been widely discussed in the literature on evolutionary game theory 
and hence will be familiar (but see Section 6). 

Noise may perturb an agent in its decision mode or in its learning 
mode. Here and in Section 6, we simplify by considering only the second 
possibility. We then simplify further by assuming that the only source of 
error lies in the possibility that an agent may mistakenly learn to play a 
strategy that is adapted to the wrong game.~° We do not explicitly model 
the situations that may be confused with the Ultimatum Game. In the 
case of a misguided proposer, we simply assume that he makes each offer 
i in the Ultimatum Game with probability Oi. If the fraction of proposers 
at time t who misread the game is always 8z, and the usual arguments 
leading to the replicator equation apply to the fraction 1 - a~ of the 
proposing population who do not misread the game, then we are led to 
the "noisy replicator equation" 

k i = (1 - a l ) x i ( r r  i - ~I) + aI(Oi - x i )  (3) 

for the evolution of the fraction xi(t ) of agents in the proposing population 
who play strategy i. The corresponding equation for the population of 
responders is 

.~j = ( l  - -  al l )Yj (7"r j  - ~ i i )  --l- a l l ( i / . /J  - y j ) ,  (4) 

where ~II is the fraction of the responding population who misread the 
game and ~j describes the choices of such agents. 

Section 6 derives (1)-(2) and (3)-(4) from an explicit choice model in 
which agents sometimes misread their strategic situation. Other choice 
models can lead to different versions of the dynamics. For example, if a 
proportion 8ff of the agents die (or leave the game, or choose to experiment 
with new strategies) in each time period of length r, to be replaced by 

l0 Although the English language forces us into speaking of players' misreading the game 
or learning to play better, it should be emphasized that our agents do not monitor what is 
going on except insofar as this is modeled by the learning rule with which they are endowed. 
The fact that they have a learning rule at all makes them more flexible than the stimulus-re- 
sponse machines that are often considered, since their decision rules for playing games 
evolve over time, but the learning rule that governs how decision rules evolve is fixed. 
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TABLE I 

FIXED NOISE CALCULATIONS 

6 i t  

0.1 0.01 0.001 0.0001 0 
0.1 7 2 1 1 1 

0.01 9 7 3 1 1 
~t 0.001 9 9 7 3 1 

O.OO01 9 9 9 7 I 
0 9 9 9 9 9 

novices who play each strategy i with probability 0/, then we are led to 
the equation 2 / =  xi(rri  - ~ I )  + 81(Oi - x i ) .  This corresponds to noise in 
agents' playing mode rather than their learning mode. Our theoretical 
analysis in Section 5 includes this case as well as (3) by examining dynam- 
ics of the form 2,. = Alxi(~r; -- ~1) + 8i(0; - x;). Alternatively, Binmore 
e t  a l .  (1993) examine a choice model that gives rise to the dynamics 
2; = x;(~r i - - ~ i ) / ~ i .  Van Damme (1987) and others work with a discrete 
version of this dynamic. We have reported numerical calculations using 
this discrete dynamic in Binmore and Samuelson (1994), and we indicate 
how the results differ from those reported here as we proceed. 

What determines 0; and ~j? These presumably reflect rules of thumb or 
behavior learned in other games, and as a result we have little to say 
about their precise form. For most of our calculations, we will assume 
that these represent a uniform distribution over strategies. We discuss 
how the specification of 0; and ~bj affects the results at the end of this 
section. 

Table I reports calculations for various values of 81 and 8ii.~t The rows 
in Table I correspond to different values of 81. The columns correspond 
to different values of 81~. In each case, the system was initialized 
with each of the 40 possible strategies being played by ~ o f  each popula- 
tion. The mistake probabilities were also taken to be uniform, so that 
o;= 

The entries in Table I are the model offers made by player I after the 
system has converged to a point where the proportion of each population 
playing each strategy is unchanging in its first 15 decimal places. In each 
case, the frequency with which the model offer is played at this point is 
1.00 to at least two decimal places. The equilibrium behavior of responders 

I1 The difference equation x,( t  + "r) - x , ( t )  = ~'[(1 - 81)x,(~ri - ~ )  + 81(Oi - xi)] is used to 
approximate Eq. (3) where we set r = 0.01. The robustness of  the approximation was tested 
by repeating a sample of  the calculations with much smaller values of  ~-. 
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is much more diffuse, but is very highly concentrated on strategies less 
than or equal to the modal offer. Hence, offers are rejected with only a 
very tiny probability. For example, in the cases when the model equilib- 
rium offer made by player I is 9, a significant fraction of responders would 
accept each of the offers between I and 9 in equilibrium (with virtually 
no responders insisting on more than 9)--but the fraction of responders 
who will refuse anything lower than 9 is high enough to make it unprofitable 
for proposers to reduce their offer. 

Table I shows that, if the noise level among responders is sufficiently 
small relative to that of proposers, then the subgame-perfect equilibrium 
appears. However, if the noise level in the responding population fails to 
be small enough compared with the noise level in the proposing population, 
then outcomes appear that are far from the subgame-perfect equilibrium. 
If responders are noisy enough compared with proposers, then player II 
gets a little more than 20% of the pie. ~2 

Section 5 provides an analytic explanation of these results for a simple 
special case, but the intuition is straightforward. It is, for example, weakly 
dominated for player II to refuse an offer of 10%. There will therefore 
always be some evolutionary pressure against this strategy because, in a 
noisy population, the set of proposers who make such low offers is continu- 
ally renewed. However, if this fraction of the proposing population be- 
comes sufficiently small, the pressure against refusals of 10% will be 
negligible compared with the drift engendered by the noise in the re- 
sponding population. Hence, if responders are noisy enough relative to 
proposers, then sufficiently many responders can reject offers of 10% that 
it is not a best response for proposers to offer less and we can reach 
outcomes that are not subgame-perfect. 

Why should we anticipate that there will be more noise in the population 
of responders than in the population of proposers? Recall that we envision 
the noise arising as a result of an agent misreading the game when learning 
and hence acquiring an inappropriate behavior. The context is that of a 
boundedly rational agent without sufficient computational power to devote 
full attention to all of the many games that compete for its attention. 
However, the frequency with which learning errors are made is unlikely 
to be independent of the potential costs. Instead, we expect the likelihood 
of a learning error to depend on how much it currently matters in payoff 

z.' For the dynamic x i ( t  + 1) = x i ( l )  + x~(l)(Tr i - "rr)/,'lr, Binmore and Samuelson (1994) find 
results that are much the same as reported in this paper, though in (1994) we find that player 
l 's  noise level need only be at least as high as player lI 's in order to give subgame-perfection. 
The outcome for cases in which player II's noise level is higher is again 9. This difference 
arises because, near the subgame-perfect equilibrium, the divisor 7r becomes especially small 
for responders. This accentuates the learning portion of the noisy replicator dynamic, causing 
the responding population to seem less noisy. 
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terms what strategy is played in the game.~3 In more familiar terms, the 
assumption will be that the players are more diligent in identifying games 
correctly when their potential gains and losses are large, and more prone 
to misread games when their potential gains or losses are small.~4 

In the Ultimatum Game, the result of making such an assumption is 
that responders will tend to be noisier when proposers are making low 
offers, because the responders will then have less at stake. In particular, 
such endogenously determined noise will lead responders to be noisier 
than proposers if the system should get close to the subgame-perfect 
equilibrium. 

To explore this question further, we performed calculations in which 
the noise levels were endogenized along the lines discussed above. We 
took 

8k(t) -- ~/3 k = I, II, (5) 
+ Xk(t) 

where c~ and fl are constant and hk(t) is the difference between the maxi- 
mum and minimum of the expected payoffs attached to player k's strate- 
gies, given the current distribution of strategies in the opposing population. 
When this difference is zero, as is nearly the case for responders at the 
subgame-perfect equilibrium, the noise level takes its highest value of/3. 
If the difference could increase all the way to infinity, 8k(t) would decrease 
to zero. 15 

t3 This formulation is consistent with the spirit of Myerson's (1991) proper equilibrium, 
which refines the idea of a trembling-hand equilibrium by making more costly mistakes less 
likely. 

t4 Such an assumption adds more complexity to the stimulus-response mechanism used 
to model an agent. The mechanism must now incorporate a device that responds to changes 
in its environment by diverting computational capacity between monitoring and other tasks 
according to the estimated rewards from the different activities. Like the learning rule, this 
device is assumed to be fixed. 

is The difference between the maximum and minimum payoff is an arbitrary measure of 
the payoffs that are at stake in a game. Calculations using alternative measures, such as 
the variance of the payoffs to player k's strategies, with each strategy taken to be equally 
likely in the variance calculation, produced analogous results (Binmore and Samuelson 
(1994)). A more realistic measure would perhaps use a sample of past payoffs rather than 
employing all current payoffs. On the other hand, we suspect that people are indeed often 
able to make educated guesses about their compatriots' current payoffs without necessarily 
being at all well informed about the strategies that secure the payoffs. Academic economists, 
for example, are often able to estimate their colleagues' salaries quite closely. Extreme 
payoffs are especially likely to attract comment. 
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TABLE II 

CALCULATIONS WITH ENDOGENOUS NOISE 

oe fl Offer 

10 1 9 
10 0.1 9 
10 0.01 9 
10 0.001 9 
1 1 9 
1 0.1 9 
1 0.01 9 
1 0.001 9 
0.1 1 9 
0.1 0.1 9 
0.1 0.01 9 
0.1 0.001 9 

0.01 1 9 
0.01 0.1 9 
0.01 0.01 9 
0.01 0.001 9 

~(o~) ~(o~) 
0.26 0.52 
0.024 0.053 
0.0024 0.0053 
0.00024 0.00053 
0.032 0.1 
0.0031 0.01 
0.00031 0.001 
0.000031 0.0001 
0.0032 0.011 
0.00032 0.0011 
0.000032 0.00011 
0.0000032 0.000011 

0.00032 0.0011 
0.000032 0.00011 
0.0000032 0.000011 
0.00000032 0.0000011 

Table II summarizes calculations with endogenized noise for various 
values of the two constants c~ and/3 listed in the first and second columns. 
The third column shows the modal offer made in equilibrium. The fre- 
quency with which the modal offer made in equilibrium is again 1.00 to 
at least two decimal places, and responders' strategies range between the 
modal offer and zero, with virtually no rejections. The fifth and sixth 
columns show the noise levels in the two populations after equilibrium is 
achieved. 

Endogenizing the noise leads to an equilibrium in which the responder 
population is noisier than the proposer population. It is therefore not 
surprising that the equilibrium outcome is not subgame-perfect. In fact, 
the equilibrium offer is again close to 20%. 

How robust are these results? First, consider the question of initial 
conditions. The calculations reported in Tables I and II are based on a 
uniform initial distribution of offers over I x I. We also performed 1600 = 
40 x 40 other calculations to explore the dependence of the results on 
the initial conditions. Table III shows the modal equilibrium offers for 
some of these initial conditions for the case of endogenous noise with ,~ = 
I and/3 = 0.1. The entry in row i and column j is the modal equilibrium 
offer when the system is started with all proposers playing i and all re- 
sponders playingj. The frequency of the modal equilibrium offer remains 
1.00 to at least two decimal places. 

Space precludes showing the whole table. The table extends downward 
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TABLE III 

C A L C U L A T I O N S  W I T H  V A R Y I N G  I N I T I A L  C O N D I T I O N S  

67 

1 2 3 4 5 6 7 8 9 I0 11 12 13 14 
1 1 2 3 4 5 6 7 8 9 i0 I0 10 10 i0 
2 I 2 3 4 5 6 7 8 9 10 10 10 I0 10 
3 i 2 3 4 5 6 7 8 9 i0 lO i0 i0 lO 
4 i 2 3 4 5 6 7 8 9 i0 I0 i0 I0 i0 
5 1 2 3 4 5 6 7 8 9 10 10 10 10 10 
6 1 2 3 4 5 6 7 8 9 10 10 10 10 10 
7 1 2 3 4 5 6 7 8 9 10 10 10 10 10 
8 I 2 3 4 5 6 7 8 9 I0 i0 I0 I0 I0 
9 1 2 3 4 5 6 7 8 9 10 10 10 10 10 

i0 I 2 3 4 5 6 7 8 9 I0 i0 I0 i0 i0 
i i  i 2 3 4 5 6 7 8 9 i0 lO I0 i0 lO 
12 1 2 3 4 5 6 7 8 9 10 10 10 10 10 
13 1 2 3 4 5 6 7 8 9 10 10 10 10 10 
14 1 2 3 4 5 6 7 8 9 10 10 10 10 10 
15 1 2 3 4 5 6 7 8 9 10 10 10 10 10 
16 1 2' 3 4 5 6 7 8 9 10 10 10 10 10 
17 1 2 3 4 5 6 7 8 9 10 10 10 10 10 
18 1 2 3 4 5 6 7 8 9 10 10 10 10 10 
19 1 2 3 4 5 6 7 8 9 10 10 10 10 10 
20 1 2 3 4 5 6 7 8 9 10 10 10 10 10 
21 i 2 3 4 5 6 7 8 9 i0 i0 I0 I0 i0 
22 1 2 3 4 5 6 7 8 9 i0 lO i0 lO 10 
23 1 2 3 4 5 6 7 8 9 10 10 10 10 10 
24 1 2 3 4 5 6 7 8 9 10 10 10 10 10 
25 10 

: : : : : : : : : : : : : : : 

. .  

j u s t  as one  would  ant ic ipa te  on the basis  of its exis t ing pa t te rn .  F o r  cases 
in which  p ropose r s  init ial ly play at least  10, it ex tends  to the right as one 
would  expec t  (except  that  the cells (38, 37), (38, 38), (39, 37), (39, 38), 
(39, 39), (40, 37), (40, 38), (40, 39), and (40, 40) yield ou tcomes  of 9 ra ther  
than  10). F o r  cases  in which  the initial offer is less than  10, we find the 
ou t come  to be 10 as long as the initial r e sponse  is not  too high (general ly ,  
up to 25, though higher  for lower  initial  proposals) .  Higher  initial r e sponses  
yield lower  final ou tcomes .  We found  the ou t comes  of initial cond i t ions  
in which  the p ropose r  offers at least  10 to be robus t  to the va lues  of a 
and/3.16 The  o u t c o m e s  for cases in which proposers  init ially offered less 

16 Using the specification of the basic dynamic as xi(t + 1) = xi(t) + x , ( t ) ( ' t r  i - "n')/ 'n" and 
taking hk(t) to be the variance of the payoffs accruing to each of agent k's strategies (rather 
than the difference between the maximum and minimum payoff) gives similar results, though 
the 10's are replaced by 9's. 
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than I0 were somewhat more sensitive, though the outcome was always 
at least as large as the minimum of the initial offer and initial proposal. ~7 

The most striking feature of Table III is the robustness of a modal 
equilibrium offer above 20%. This offer appears for a large collection of 
initial conditions, including all those in which the initial proposal and 
response are at least 20%. The next section explains why we believe these 
are most likely to be the relevant initial conditions. 

How do our results depend upon the specification of noise, i.e., on 0; 
and tkj? By changing these specifications, we can obtain different results. 
The distribution of noise among the responders is especially important. 
If we alter qJj to put relatively more weight on offers and responses near 
zero, equilibrium outcomes can be achieved in which the responder gets 
less that 20% of the pie. Causing more weight to be put on somewhat 
higher offers gives outcomes in which the responders get more than 20% 
of the pie. 

It is interesting to note, however, that changing the values of 0i and qJj 
that are attached to relatively high offers has virtually no effect on the 
outcome. For example, we changed the mistake probabilities so that 020 
and qJ20, the probabilities of the "fair" offer and response, took various 
values up to 0.95 (with the remaining values of 0i and ~j remaining equal 
to one another). We might view this as a case in which the rule of thumb 
to which most noisy players resort when not paying attention to the 
game is to split the pie evenly, with a minority of such players adopting 
completely random rules of thumb that attach equal probability to all 
strategies. This change had almost no impact on the results of the calcula- 
tions. 

Probability attached to the "fair" response of 20 has little effect because 
this offer lies above the range of potential modal equilibrium offers (given 
that the remaining noise is uniformly distributed). As a result, the response 
earns a low payoff and the learning dynamics ensure that little probability 
accumulates on this response. The important considerations involve the 
distribution of noise over those responses that are lower than potential 
modal equilibrium offers. These responses earn almost identical payoffs 
and noise plays a major role in determining the equilibrium proportions 
of responders choosing each of these strategies. The key here is whether 
the noise in the responder population can amass a sufficient proportion 
of responders on a strategy y to make it unprofitable for proposers to 
make offers x < y and hence sustain an outcome in which the modal offer 
is y. This depends upon the relative noise level of the two populations 

17 Whenever proposers initially make smaller offers than responders will accept, the dy- 
namics begin with a race between proposers and responders, with each adjusting to match 
the other's strategy. The outcome of this race can be sensitive to parameters of the model 
when all responders initially get very low payoffs, as is the case for low proposer offers. 
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and on the specification of the noise. With uniform noise and sufficiently 
noisy responders, offers less than or equal to 10 can be sustained (cf. 
Table III) but higher offers cannot. If the responder's noise concentrates 
more of its probability near (away from) zero, then lower (higher) modal 
offers will result (provided in the latter case that the increased weight is 
not directed to offers such as 20 that are too high to be possible equilibrium 
modal offers). 

It is clear that we cannot place too much significance on the particular 
value of the equilibrium offer of a little more than 20% that repeatedly 
emerges in the calculations, and we are anxious that our results not be 
remembered for this number. Different specifications of the model can 
give different numbers. The important feature of the results is that the 
equilibrium offer is frequently far from subgame-perfect, even when the 
noise levels are made very small indeed. This result requires primarily 
that the responding population be relatively more noisy than the proposing 
population. But this is the configuration of noise levels that appears if 
players tend to be less noisy when making decisions that are more im- 
portant. 

3. RELEVANCE TO EXPERIMENTAL DATA.'? 

How do we think the calculations of the previous section might be 
relevant to the experimental data? We think it useful to distinguish four 
time spans: ~8 

1. In the short run, one should anticipate that behavior is driven 
primarily by norms that are triggered by the framing of the problem. 
The framing may well elicit norms that are ill-adapted to the laboratory 
situation. If these norms have been strongly reinforced outside the labora- 
tory, they may be hard to shift. We suspect that the "irrational" behavior 
studied by the school of Kahneman and Tversky (1987) often falls into 
this category. 

2. In the medium run, subjects begin to learn--as emphasized by 
Andreoni and Miller (1993), Crawford (1991, 1992), Miller and Andreoni 
(1991), Roth and Erev (1993), and numerous other authors. 

3. In the long run, this interactive learning process may converge 
on an equilibrium of the game. 

4. In the ultralong run, there may be jumps between equilibria when 

18 Our general views on the evolution of social norms inside and outside laboratories have 
been reported elsewhere (Binmore and Samuelson (1994)). 
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random shocks jolt the system from one basin of attraction to another--as 
emphasized by Young (1993), Kandori e t  al.  (1993), and Samuelson (1994). 

In the ultraiong run, we expect an evolutionary process to select the 
subgame-perfect equilibrium. However, our guess is that the ultralong 
run is t o o  long a run to be relevant to the available experimental data. 
We also do not think that the replicator dynamics provide a useful model 
of the ultralong run.~9 

But, as we have argued, the replicator dynamics do have a role to play 
as long-run approximations to certain simple learning rules. We therefore 
believe that the asymptotic properties of the replicator dynamics may be 
relevant to the long-run outcome of interactive learning in the laboratory. 
If so, then it is significant that our calculations of the long-run behavior 
of noisy replicator dynamics in the Ultimatum Game should generate 
equilibria that are far from subgame-perfect. 

We believe that our calculations are relevant to the short run as well 
as the long run. As Section 6 explains, we think it possible to regard our 
dynamics as a crude but instructive model of social evolution (as well as 
of interactive learning in the laboratory). 

More importantly, the social norm (or norms) triggered in the short 
term by laboratory experiments on the Ultimatum Game have presumably 
evolved to guide behavior in real-life bargaining situations that are super- 
ficially similar to the Ultimatum Game in some respects. We must therefore 
examine long-run behavior in these external situations for the origin of 
the norms that guide short-run behavior in laboratory experiments on the 
Ultimatum Game. 

The real-life bargaining situations that have shaped the norms which 
subjects bring to the laboratory will be complicated by informational, 
reputational and other effects that are controlled away in the laboratory. 
The pure Ultimatum Game represents an extremai case in the class of 
real-life bargaining situations, because all the power is on the side of the 
proposer. If a social norm adapted to the pure Ultimatum Game leads to 
the proposer offering about 20% to the responder, we should therefore 
anticipate that bargaining norms adapted to a wider class of bargaining 
games will assign m o r e  than 20% to the responder. If this guess is correct, 

~9 In Section 6, an implicit appeal is made to the law of large numbers when studying the 
long run, so that the underlying stoachastic learning is smoothed into a deterministic process. 
Binmore and Samuelson (1993) argue that one must refrain from such appeals when studying 
the ultralong run, and work directly with the stochastic system instead. If one were to work 
directly with the stochastic system in the current paper, results would emerge concerning 
the expected waiting time until reaching the subgame-perfect equilibrium in the ultralong 
run. The noisier the responding population relative to the proposing population, the longer 
the system lingers near long-run equilibria that are not subgame-perfect--and hence the 
longer and less relevant the ultralong run. 
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TABLE IV 

MEDIUM RUN EQUIVALENT OF TABLE I 

6tt 

0.1 0.01 0.001 0.0001 0 
0.1 9(13)  7(74)  7 (69) 7(69)  7(69)  

0.01 9(15)  9 (12) 9(12)  9(12)  9(12)  
~I 0.001 9 (15) 9 (12) 9 (12) 9 (12) 9 (12) 

0.0001 9 (15) 9 (12) 9 (12) 9 (12) 9 (12) 
0 9(15)  9(12)  9 (12) 9(12)  9(12)  

we should therefore envisage the initial conditions for learning in the 
laboratory as allocating more than 20% to the responder and hence as 
lying in the basin of attraction of the 20% equilibrium offer of Table III. 

What do our calculations tell us about the medium run? Table IV is a 
medium-run version of Table I. It differs from Table I in that the modal 
offer is reported ~n the first occasion at which no change in consecutive 
iterations was detected in the first five decimal places of the fractions of 
proposers making each offer. (Table I does the same, but with fifteen 
decimal places.) The number in parentheses following each modal offer 
is a measure of how much learning was necessary before a temporary 
stability in the first five decimal places was achieved. 2° In Table I, the 
frequency with which modal offers were used was 1.00 to at least two 
decimal places. The frequency with which the modal offers were used at 
the time reported in Table IV is at least .98. 2~ 

Table IV shows that the system always (with uniform initial conditions 
and perturbations) goes quite quickly to a modal offer of about 20%. But 
Table I shows this to be a medium-run result. In the long run, the system 
sometimes moves away to the subgame-perfect equilibrium. Only when 
81 < 8u is the medium-run behavior a useful guide to the long-run behavior 
of the system. 

These results complement those of Roth and Erev (1993), who report 
Ultimatum-Game simulations that spend extended periods of time, in the 

.,0 The measure is the number of iterations of the discrete dynamic described in note 11 
multiplied by the step size. In the model of Section 6, r of the population has an opportunity 
to change strategies in each iteration of the discrete equation. Our measure therefore provides 
a crude approximation to the aggregate number of times that members of the entire population 
have assessed their strategies. The measure is intended to serve as a correlate for the number 
of rounds of an experiment required to reach temporary stability. 

21 If we ask for stability in only the first three decimal places, the first line of this table 
would read 9 (7) 9 (6) 9 (6) 9 (6), with the modal offer being played with frequency at least 
0.85 in each case. 
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medium run, near equilibria that are Nash but not subgame-perfect. Roth 
and Erev suggest explaining the experimental data on the Ultimatum Game 
as a set of medium-run observations of a learning process. 

We agree that much experimental data consists of a series of snapshots 
of medium-run phenomena. This is especially true of Ultimatum Game 
experiments, where both dispersion in proposals as well as rejected offers 
often persist into the later rounds of the experiments, both of which can 
only be medium-run phenomena in our model. However, we do not think 
it follows that theories of long-run behavior can be neglected. As our 
analysis of Section 5 suggests, long-run predictions of theoretical models 
of interactive learning will often depend only on qualitative features of 
the models. By contrast, medium-run predictions must be expected to 
depend upon the fine details of the interactive learning process. We there- 
fore think that current theoretical techniques are more likely to be success- 
ful when applied to long-run rather than medium-run phenomena. Rather 
than seeking to explain experimental data in which medium-run behavior 
has been elicited, we therefore think there is a strong case for designing 
experiments with a view to eliciting long-run behavior. 22 The contribution 
of this paper is to argue that, in such experiments, there is no compelling 
reason why predictions should favor subgame-perfect equilibria over other 
Nash equilibria. 

4. LEAVING MONEY ON THE TABLE 

The previous sections argue that attention needs to be paid to Nash 
equilibria in the Ultimatum Game that are not subgame-perfect. Such 
equilibria require that the responder be prepared to refuse low positive 
offers. If offered a choice between something and nothing, such a re- 
sponder would therefore sometimes choose nothing. Such behavior is 
outlawed in conventional economic modeling. Perhaps for this reason, a 
common response to our argument is an incredulous "Why would anyone 
leave money on the table?" 

That positive offers should be refused in the short term is easy to 
understand. Short-term behavior in the Ultimatum Game is likely to be 
governed by social norms that are triggered by the framing of the labora- 
tory experiment. Rather than being adapted to the pure Ultimatum Game, 
such social norms will presumably have evolved for use in everyday 
cousins of the Ultimatum Game. In everyday life, we rarely play pure 

22 Binmore et al. (1992), for example, obtain very close convergence to equilibrium in 
less than 40 repetitions in a complicated bargaining game by offering high incentives and 
helping the subjects with sophisticated computer graphics. 
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take-it-or-leave-it games. In particular, real-life games are seldom played 
under conditions of total anonymity. A refusal of something positive may 
therefore serve to maintain a reputation for toughness. Even when we do 
play anonymously, outside options are often available. For example, in 
the take-it-or-leave-it auction used by stores to sell their goods, a refusal 
of something positive may simply indicate a willingness to search else- 
where for a better deal. Norms that call for refusals in commonly occurring 
"take-it-or-leave-it" situations therefore make good evolutionary sense. 
Given that such norms exist, it is unsurprising if they are sometimes 
inappropriately triggered in laboratory experiments. Short-run refusals of 
positive offers in the pure Ultimatum Game therefore create no problem 
for orthodox game theory. 

However, we argue that Nash equilibria that are not subgame-perfect 
should be taken seriously even in the long run. Notice first that such 
equilibria actually require very few offers to be rejected, because propos- 
ers learn not to make such offers. Nevertheless, responders must stand 
ready to reject some positive offers. 

On this subject, it is useful to observe that people clearly do sometimes 
leave money on the table. Frank (1988), for example, reminds us about 
tipping behavior in restaurants that are never to be visited again. After 
the waiter makes your change, you can either pocket the entire amount 
or leave the customary percentage on the table. Nearly everyone chooses 
the latter option--including economists! 

A kibitzer may ask why we leave money on the table. Most people are 
satisfied with the explanation that leaving a tip is a custom that it would 
be uncomfortable to violate. If pressed, they might attribute the discomfort 
to the unfairness involved in disappointing the server's expectations. 

Such considerations have led a number of authors to downplay strategic 
explanations of experimental behavior in favor of various theories of "fair 
play". Sophisticated versions of this approach sometimes build a taste 
for "fairness" into the utility functions attributed to the subjects. Ochs 
and Roth (1989) discuss such a utility function in explaining the medium- 
run results of an alternating offers bargaining experiment. Bolton (1991) 
explicitly constructs such a utility function for this purpose. 

We agree that subjects find their emotions engaged in bargaining situa- 
tions. They also frequently explain their bargaining behavior in the labora- 
tory in terms of "fairness." But an approach that takes these facts at 
their face value is in danger of explaining too much and too little. Fairness 
theories explain too much because, by choosing one's fairness notion with 
sufficient care, one can justify a very wide range of outcomes. At the 
same time, such theories explain too little because they provide no insight 
into the origin of the fairness norms to which appeal is made. 

We believe that a more fruitful approach is to ask how the custom of 
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leaving money on the table can survive. Our answer is quite simple. The 
amounts involved and the frequency with which the situation arises are 
too small to provide sufficient evolutionary pressure to eliminate the phe- 
nomenon in a noisy environment. What then of the folk explanation in 
terms of the discomfort felt at violating a fairness norm? 

In responding to such questions, it is important to appreciate that the 
evolutionary approach we advocate reverses the standard explicans and 
explicandum of the folk explanation and of economic theory. Our players 
are not members of the species Homo economicus. They do not optimize 
relative to fixed preferences. They simply have decision rules for playing 
games. When a player switches from a less profitable to a more profitable 
strategy, he does not do so because he thinks that the switch is optimal--he 
is just acting as a stimulus-response mechanism. 

This model of Homo sapiens raises the question of how it feels for 
one's actions to be programmed as a result of past experience. Here the 
post hoc, ergo propter hoc fallacy awaits the unwary. It is easy to say 
that I preferred to take this foolish action rather than that wise action 
because I got angry. But we feel angry because adrenalin and other chemi- 
cals have been released into our bloodstream by a process which is only 
very partially under our conscious control. Angry feelings are a condi- 
tioned reflex to certain learned stimuli. Such conditioned reflexes survive 
because the behaviors they induce have evolutionary advantages. Rather 
than seeking to explain a particular behavior in terms of the angry feelings 
that accompany it, we therefore do better to explain the angry feelings in 
terms of the evolutionary advantages of the behavior. In brief, being angry 
or fearful or amorous is how it feels to be a stimulus-response mechanism. 

Of course, none of us like to admit that much of our behavior is little 
more than a set of conditioned reflexes. We prefer to offer more flattering 
rationalizations of the behavior. For example, the stimulus of receiving 
an offer of only 10% in the Ultimatum Game may be sufficiently irritating 
that we turn the offer down. If asked why we refused, we may then 
rationalize our behavior by arguing that irritation is an entirely appropriate 
response to an "unfair" offer of 10%. Indeed, such an explanation may 
become institutionalized and so reinforce the behavior that it "explains." 
But we see no more reason to believe that "fairness norms" are fixed 
and immutable than that economic agents always maximize money. We 
believe that players usually find their way to a long-run equilibrium of 
trial-and-error learning without having any clear understanding of the 
strategic realities of the game they are playing. They simply learn that 
certain stimulus-response behaviors are effective. After the game, they 
may rationalize their behavior in various ways. In bargaining experiments, 
they often say that the long-run equilibrium to which they found their 
way is "fair ."  But, from an evolutionary perspective, how they explain 
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their own behavior  to themselves  and others is an epiphenomenon.  I f  they 
had found their way to another  equilibrium, they would be offering some 
other explanation.  23 Economis ts  who fit utility functions to observed be- 
havior would similarly find themselves  proposing a different utility 
function. 

In summary ,  we believe that attention should be focused on the evolu- 
tion of b e h a v i o r .  I f  a type of behavior  that prompts  people to leave money  
on the table survives,  it will be because  there is insufficient evolut ionary 
pressure to r emove  it. Fairness explanations may be offered as rationaliza- 
tions of  the behavior.  Such stories may even be incorporated into the 
workings of  the s t imulus - response  mechanism.  But the details of  how 
the mechanism actually works  or how we explain its workings to ourselves 
are secondary.  The pr imary consideration is why some behavior  patterns 
survive in a population while others will necessarily perish. Only after 
this question has been answered is it worthwhile to ask why some of the 
stories we tell ourselves  are washed away by the evolut ionary tide while 
others remain high and dry. 

5. AN ULTIMATUM MIN1GAME 

To identify the forces that drive our computat ional  results, this section 
provides an analytical study of the simplified version of  the Ul t imatum 
Game shown in Fig. I. In this Ul t imatum Minigame, player I can make 

23 One can observe the fairness norms evolving in the laboratory. In Binmore et al. (1992), 
the median long-run equilibrium claim in a laboratory implementation of the Nash Demand 
Game turns out to be a very good predictor of the median claim said to be "fair" in a 
computerized postexperimental debriefing, even though subjects are randomly chosen for 
an initial conditioning that directs their subsequent play to different long-run equilibrium 
claims. 
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FIG. 2. Phase diagram, no noise. 
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a high offer (H) or a low offer (L). If he makes a high offer, it is assumed 
that player II accepts. If he makes a low offer, player II may accept (Y) 
or refuse (N). 

The Ultimatum Minigame has the same structure as Selten's (1978) 
Chain-Store Game. Although we do not press the point, our conclusions 
in this section therefore provide a possible resolution of the chain-store 
paradox that applies even in the case when there is just one potential 
entrant. 

Figure l(c) shows the pairs (x, y) that represent equilibria in the Ultima- 
tum Minigame, where x and y are the probabilities with which H and Y 
are played. There is a unique subgame-perfect equilibrium S at (0, 1) in 
Fig. l(c), and a component N of Nash equilibria occupying the closed 
line segment joining (1, §) and (1, 0). 

Figure 2 shows the trajectories of the standard replicator dynamics in 
the Ultimatum Minigame: 

5c = x(1 - x)(2 - 3y) (6) 
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= y(1 - y)(1 - x). (7) 

We summarize the key properties of these trajectories in Proposition 1 
(cf. note 6): 

PROPOSITION l. The subgame-perfect equilibrium S is the unique as- 
ymptotic attractor of  the unperturbed replicator dynamics. With the excep- 
tion of  (1, §), the Nash equilibria in the set N are local attractors. 

The fact that interior points of N are local attractors does not seem to 
us an adequate reason for regarding them as alternatives to the subgame- 
perfect equilibrium S. To draw this conclusion, we feel it necessary that 
the result should survive in the presence of noise that continually replaces 
strategies that the replicator dynamics drives to extinction. We accordingly 
require strategies to be at least local attractors in slightly perturbed ver- 
sions of the dynamics where extinction is not a possibility. We accordingly 
study the perturbed replicator dynamics, defined by 

k = Aix(1 - x)(2 - 3y) + 81(½ - x) 

= Aiiy(1 - y)(1 - x) + ~II(½ - Y)- 

(8) 

(9) 

In the case when A k = 1 - 8k (k = I, II), these equations are analogues 
to (3)-(4) of Section 3. 

Figures 3 and 4 show the trajectories for the perturbed replicator dynam- 
ics. None of the points in N is a local attractor in Fig. 3, where responders 
and proposers are equally noisy; but there exists an asymptotic attractor 
in Fig. 4, where responders are noisier than proposers. 

More formally, we are interested in what happens when the noise in 
(8)-(9) is small, so that (8 l, 8 u, A t, AII) is close to (0, 0, 1, 1). We fix ~b -- 
~llAl/~lmll and consider the limit as (81, ~II,  Al ,  All) -"> (0, 0,  1, 1) in two 
cases: 

Case 1:0  < ~b < 3 + 2N/2. 

Case 2 :3  + 2X/2 < ~b. 

Since 3 + 2X/2 - 5.8, responders are appreciably noisier than proposers 
in the second case. 

LEMMA 1. Let R be the set o f  rest points o f  the system (8)-(9) for 
values of (8  I, 81i, AI, Atl) near (0, 0, l, 1). 

In Case 1, the set R has at most one limit point, which is the subgame- 
perfect equilibrium S = (0, 1). 
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FIG. 3. Phase diagram, comparable noise (61 = I~11 = 0.01). 
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In Case 2, the set R has at most three limit points S = (0, l), (1, y) 
and (1, 7). The points (1, y) and (1, Y) lie in the set N of  Nash equilibria. 

Proof. Writing 5c = ~ = 0 and (81,811, AI, At0 = (0, 0, I, 1) in (8)-(9) 
yields (0, 0), (0, 1) and (1, y) as candidates for the limit points of R. The 
first point is a source for the unperturbed dynamics, and is easily excluded 
as a limit point of R. We now consider the possible values of y. To this 
end, write 5c = :9 = 0 in (8)-(9) and then set x = I. We then obtain the 
equation 

4, = y(1 -y)  
(2 - 3 y ) ( 2 y -  I)" 

This equation, illustrated in Fig. 6, has two solutions, y and 7, satisfying 
½ < y _ _ < 2 -  V 2 < 7 < ~ w h e n 4 , > 3 +  2 V ~ . W h e n ~ b < 3  + X/2, the 
equation has no solutions y satisfying 0 -< y -< 1. • 
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PROPOSITION 2. Let A(SI, 8tl, Al, A u) be the set o f  asymptotic at- 
tractors of  the system (8)-(9) given values (8 I, 811, AI, At0. 

In Case 1, the set A has a unique limit point as (8 l, 8ii, A t, AII) --~ 
(0, 0, 1, 1), which is the subgame-pepfect equilibrium S = (0, 1). 

In Case 2, the set A has two limit points as (8 t, 811, A l, All) --~ (0, 0, 
l, 1), which are S = (0, 1) and ( l , y). (The point ( l, y-) is a limit o f  saddles.) 

The  first case  gives rise to the phase  diagram in Fig. 3; the second case  
to the phase  diagram in Fig. 4. 

Proof. The  p roo f  o f  the first s ta tement  is s t ra ightforward,  and we 
cons ider  only the second.  The  right side o f  (8)-(9) defines a funct ion F: 
I~ 2 --~ I~ 2 for  which 

AI(2 - 3y)(1 - 2x) - 81 -3A1x(1 - x) ) 

DF(x,  y) = --AIIY(1 -- y) All(1 - 2y)(1 -- x) - 8ii " 
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The trace of  this matrix is negative when ½ < y < ~ and x > ½. We therefore 
consider the limiting value of  its determinant.  

Multiply the second column of det DF(x,  y) by 2y - 1 and then make 
the substitution 8 1 i ( 2 Y  - I )  = 2Auy(1 - y)(1 - x), which holds at a rest 
point by virtue of  (8)-(9). Fac tor  out the term AIAu(! - x) and write 8~ = 
0 and x = 1 in what  remains.  We then have to sign the determinant  

2 3y 3(.2y - 1) = y2 _ 4y + 2. 
y ( 1 - y )  2 y - - 2 y +  1 

The roots of  the quadratic equation y2 _ 4y + 2 = 0 are 2 - V ~  and 
2 + V ~ .  It follows that the determinant  is positive when y -- y -< 2 - 
V 2  and negative when y = y < § < 2 + V~.  Thus y_. is an asymptot ic  
a t t ractor  and y is not. • 

We next briefly consider  the effect of  endogenizing the noise in (8)-(9) 
by writing AI = q(1 - 8z(t)) and An = cu(l - 8zi(t)), where q and Cn are 
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~ y  

constants and St(t) and 8u(t) are given by (5). We study the rest points 
of  this system as fl approaches zero, for small values of  a. Figure 5 shows 
the trajectories for this c a s e .  24 We have: 

PROPOSITION 3. Let A be the set of  asymptotic attractors for (8)-(9) 
with endogenous noise when fl > 0 is small. For sufficiently small t~, A 
has two limit points S = (0, 1) and (1, y) as ~ ~ O. As ct ~ 0, these limit 
points conoerger to (0, 1) and (1, ½). 

Proof. The first statement follows from an argument analogous to that 
of the previous proposition, along with the observation that, as x ~ 1, 
the difference between the minimum and maximum of player II 's  payoffs 
approaches zero, so that 8u(t)/a~(t) gets very large for sufficiently small 
a. As o~ ~ 0, the limiting ratio of 81i(t)/81(t) approaches infinity, in which 
case we see from Fig. 6 that the limiting values o f y  and y approach ½ and 

respectively. • 

We can identify the forces behind these results. When nearly all pro- 
posers are playing H, the pressure for a responder to play Y is weak. 

24 An asymptotic attractor exists,  though it is difficult to see, at approximately (1, 0.505). 
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Adding noise to the strategies of the proposer pushes the population of 
proposers away from H, and increases the pressure for responders to 
move towards Y. This pushes the system toward the subgame-perfect 
equilibrium. However, the responders are also noisy. In the absence of 
other forces, this noise creates a drift that would eventually result in the 
responding population being split equally between agents who play Y and 
agents who play N. But the best reply for a proposer against such a mix 
in the responding population is to play H. If the drift in the responding 
population is sufficiently strong, it overpowers the countervailing tendency 
towards the subgame-perfect equilibrium. As a result, the responding 
population remains close enough to a half-half mix of Y and N that 
the best reply for proposers continues to be H. The subgame-perfect 
equilibrium then fails to be selected. 

The same intuition can be expressed in a more quantitative form. The 
dynamic system give by (6)-(7) can be represented as a vector field on 
the state space [0, l] z, associating with each point (x, y) a vector 

(x(l - x)(2 - 3y), y(1 - y)(1 - x)) (lO) 

indicating the direction and strength of moment at (x, y). Along the compo- 
nent N illustrated in Fig. lc, these vectors are all zero vectors. The 
perturbed system (8)-(9) is the sum of the vector field given by (10) and 
a vector field of perturbations given by 

( ( A  I - 1 ) x ( l  - x ) ( 2  - 3 y )  + 81(½ - x ) ,  

(A n - 1)y(1 - y)(l - x) + ~II(½ -- Y)). (11) 

Because the vector (10) is zero on N, the behavior of (8)-(9) on N is 
driven by the perturbations given in (I I). The key question here is whether 
we can find a subset N C N such that the perturbations on N point into 
the basin of attraction of N in the unperturbed dynamics given by (10). 
If such an N exists, then the perturbations have the effect of continually 
pushing points near N back into the basin of attraction of N. The dynamics 
(8)-(9) will then have an asymptotic attractor that is close to N and which 
converges to N as noise levels become small. 

What does this have to do with relative noise levels? Let N = [0, 2 + 
e] for some small e > 0. Notice that this set includes the half-half mixture 
between Y and N, and recall that responder perturbations are pushing 
responders toward the half-half mixture of Y and N. At the same time, 
proposer perturbations are pushing proposers towards the strategy L, 
which in turn creates pressure for responders to switch to g. The larger 
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the ratio 8H to ~I, the stronger the net perturbation pushing responders 
toward the half-haft mixture, and the more likely the resulting perturba- 
tions to point into the basin of attraction of N. Notice that only relative 
noise levels matter in determining the direction of the perturbation vectors, 
which (combined with the fact that (10) is zero on N) explains why the 
argument holds for arbitrarily small absolute noise levels. 

Two implications of this argument are immediate. First, if the payoff 3 
is replaced by 5 in the Ultimatum Minigame, then the best response to a 
half-half mixture of Y and N is L, so that the preturbed dynamics can 
never point into the basin of attraction of a subset of N. The dynamics 
then lead to the subgame-perfect equilibrium regardless of relative noise 
levels. Second, even after replacing 3 by 5, we could induce the perturba- 
tions to point into the basin of attraction of a subset of N if we altered 
the specification of the responders' behavior (when noisy) to put a large 
probability on N rather than a probability of ½ on N. We see here the 
sensitivity of the results to the specification of noisy behavior. 

Second, this argument also provides an idea as to how sensitive our 
results are to the sp.ecification of the unperturbed learning dynamic, which 
we have taken to be the replicator dynamic. The precise form of this 
dynamic is not particularly important, as long as the points in N are rest 
points and the set N has a basin of attraction into which perturbations 
can point. This excludes pure best-reply dynamics, in which even an 
arbitrarily small payoff difference between Y and N causes all responders 
to immediately switch to Y. However, virtually any system in which 
growth rates of strategy proportions are smooth, increasing functions of 
expected payoff differences (with growth rates being zero when all strate- 
gies have the same expected payoff) has the desired property. 2s The exis- 
tence of an asymptotic attractor close to the component of equilibria that 
are not subgame perfect therefore holds for a wide class of dynamic 
processes, although the precise location of this attractor will be sensitive 
to the specification of the process. 

These results address long-run behavior. What about the medium run? 
Figures 3 and 4 reveal medium-run behavior matching that reported in 
Table IV for the full Ultimatum Game. The trajectories in Fig. 3 reach 
the subgame-perfect equilibrium S in the long run, but in the medium run 
they can first approach the set N of Nash equilibria that are not subgame 
perfect. In Fig. 4 (where 81 < 8if), some trajectories again approach N in 
the medium run, but in these case these trajectories never leave the vicinity 
of N. 

These results allow us to return to the question of fairness. Experimental 
results in bargaining games are now seldom explained purely in terms of 

Samuelson (1988) describes such systems as "cardinal" (as opposed to "ordinal"). 
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fairness norms. Prasnikar and Roth (1992) and Roth et al. (1991), for 
example, suggest that some experimental results are best described in 
terms of a trade-off between strategic and fairness factors. Their most 
striking example contrasts the Ultimatum Game with the Best Shot Game. 
The latter is a public-goods-provision game that, like the Ultimatum Game, 
features a unique subgame-perfect equilibrium in which the first mover's 
payoff is much higher than the second mover's. 

Prasnikar and Roth find experimental outcomes for the Ultimatum Game 
that are not close to subgame perfection. On the other hand, their Best 
Shot outcomes are consistent with a subgame-perfect explanation. They 
suggest that fairness considerations are able to wrestle outcomes away 
from subgame-perfection in the Ultimatum Game, but are overwhelmed 
by strategic considerations in the Best Shot game. In adopting this interpre- 
tation, they note that the Best Shot Game has only one pure-strategy 
Nash equilibrium that is not subgame perfect. The payoff pair resulting 
from this Nash equilibrium is (0.4, 3.7). The payoff pair at the rival sub- 
game-perfect equilibrium is (3.7, 0.4). Prasnikar and Roth argue that there 
is then very little scope for learning to reinforce movements of behavior 
away from the subgame-perfect equilibrium, and hence very little scope 
for fairness considerations to gain a foothold. This contrasts with the 
Ultimatum Game, where the presence of Nash equilibria that are close to 
the unique subgame-perfect outcome provides opportunity for movements 
away from subgame perfection (perhaps induced by fairness considera- 
tions) to be reinforced. 

Our methodology offers a potential explanation of such results that, in 
keeping with our discussion in Section 4, does not require treating "fair- 
ness" as a primitive concept. To make this point, we contrast the Best 
Shot Minigame of Figure 7 with the Ultimatum Minigame of Figure 1. In 
the Best Shot Minigame, player I has the option of making a high (H) or 
low (L) contribution to the public good. If player I makes a high contribu- 
tion, the player II is assumed to make a low contribution. If player I 
makes a low contribution, then player II has the choice of a high or low 
contribution. The payoffs are such that there is no gain to both players 
making a high contribution and each player is better off if the other player 
makes the high contribution. 

As Fig. 7 indicates, the Best Shot Minigame has the same qualitative 
features as the Ultimatum Game, with a subgame-perfect equilibrium S 
of (L, H) and a component N of Nash equilibria in which player I plays 
H. However, the strategic incentives associated with these equilibria dif- 
fer, with this difference making it very much more likely that our model 
will select a Nash equilibrium that is not subgame-perfect in the Ultimatum 
Minigame than in the Best Shot Minigame. In particular, notice that N is 
much smaller than the corresponding Ultimatum Game component. Nash 
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equilibria that are not subgame perfect in the Best Shot Game require 
that player II uses H with a probability no higher than approximately 
0.1 1. As a result, the basin of attraction of this component relative to the 
unperturbed replicator dynamics is small. Moreover, if perturbations are 
introduced in which H and L receive the same probability from players 
who misread the game, then the perturbed dynamics cannot point into 
the basin of attraction of N. In contrast to the Ultimatum Minigame, no 
local attractor can therefore be found close to N and the subgame-perfect 
equilibrium is necessarily selected in the Best Shot Minigame. 26 

6. THE RELEVANCE OF REPLICATOR DYNAMICS 

Why do we think the replicator dynamics, with their origins in biology, 
are relevant? B6rgers and Sarin (1993) have shown that the replicator 
dynamics can serve as an approximation to simple learning models related 
to that used by Roth and Erev (1993). In this section we present a simple 
model of social evolution that also leads to the replicator dynamic. Our 
purpose is not to argue that the replicator dynamics represent "the" right 
model, but only to argue that dynamics of their general type are worthy 
of our attention. 27 

We interpret our model as one of social evolution because it relies on 
the ability of players to observe others' strategies; information that is 
generally not available in the laboratory. The reinforcement learning model 
of B6rgers and Sarin (1993) is perhaps better suited as a model of learning 

26 A local attractor could be created close to N, but this requires perturbations that are 
very heavily weighted toward L. 

27 See Binmore and Samuelson (1993) and Cabrales (1993) for similar arguments. See 
Bendor e t  al. (1991) for another aspiration learning model. 
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in experiments. As explained in Section 3, both types of learning seem 
relevant to explaining experimental data. 

Divide time into discrete periods of length ~'. In every period, each 
agent retains his current strategy with probability 1 - r. With probability 
r, the agent compares his payoff with an aspiration level A, which is 
random and uniformly distributed on [/, L]. If the agent receives a payoff 
exceeding A, then the agent does not switch strategies. If the agent's 
payoff falls short of A, then the agent randomly chooses a new strategy. 
The probability that a given strategy is chosen is taken to be the proportion 
of the population playing that strategy. For example, it may be that the 
agent chooses a new strategy by randomly selecting another member of 
the population and imitating his strategy. 

Why is A random? Our preferred interpretation here is that the aspiration 
level is actually fixed while the payoffs in the game are random, 2s though 
we find it analytically convenient to work with the equivalent formulation 
of a random aspiration level. This is consistent with the view we used to 
motivate our noisy dynamics, namely that players are constantly involved 
in a multitude of different games and may misperceive the precise nature 
of the game. 

Let p i ( t )  be the probability that the aspiration level A exceeds the payoff 
from a proposer's strategy i in period t. We assume that exactly p i ( t )  of 
the proposers playing strategy i at time t are dealt an aspiration level in 
excess of their payoffs, and that these proposers switch to new strategies 
in exactly the same proportions as these strategies are used in the popula- 
tion of proposers. Then, 

x i ( t  + z)  = xi(t)(1 - rPi( t ) )  + ~ ,  rp j ( t )x j ( t )x i ( t ) .  (12) 

Note that p i ( t )  = ( L  - z r M ) ) / ( L  - 1) ,  where ~r~(t) is the payoff to strategy 
i in period t. Hence, 

x i ( t  + r )  - x i ( t )  . . r r i ( t )  - " f f l ( t )  
r = x i ( t )  - L - - - - 1  ' 

where ~t(t) is the average payoff over all proposers' strategies. Taking 
the limit as r -* 0 leads to a continuous-time version of the dynamic: 

~ri- zrl (13) 
JCi = Xi' L - l " 

2s We then implicitly assume that the dispersion of the payoff distribution around its mean 
does not vary over strategies or players. More realistic assumptions would lead to more 
complex dynamics. 
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A similar equation can be derived for responders. The replicator dynamic 
given by (1)-(2) is the special case in which time has been rescaled so as 
to eliminate the constant L - /.29 

Now suppose that each proposer ignores the learning process with 
probability 8i in each period. Given that the learning process is ignored, 
with probability ~- such an agent abandons his strategy regardless of aspira- 
tion level considerations and randomly chooses a new strategy, giving 
strategy i probability 0i. 

The dynamic given by (12) now becomes: 3° 

x i ( t  + ~') = (1 - 81){xi(t)(1 - r p l ( t ) )  + ~ z p j ( t ) x j ( t ) x i ( t ) }  
j e s  

+ 81[xi(t)  + ~'(O~(t) - x i ( t ) )] .  

But P i ( t )  = ( L  - 7r i ( t ) ) / (L  - l).  As ~" --~ 0, we obtain that 

.7r i( t )  - ~i(t) 
J:i -~ (1 - 8i )x i ( t )  - L - - ' l  + 8I(Oi - x i ( t ) )"  (14) 

The noisy replicator dynamic given by (3)-(4) is the special case in which 
L - 1 = 1 for both populations. 

We have assumed that the two populations are governed by identical 
learning rules. There are two obvious ways in which they may not be. 
First, the populations may be characterized by different values of L - I. 
This is equivalent to saying that the unperturbed dynamics presented in 
(1)-(2) may proceed at different speeds of the two populations. 3~ Consider 
the Ultimatum Minigame. The faster is the relative rate at which population 
I learns, the larger is the basin of attraction of the component of Nash 
equilibria N that are not subgame perfect. This makes it more likely that 
the perturbations on this component will point into its basin of attraction, 
and hence more likely that the dynamics do not lead to the subgame- 
perfect equilibria. 

Alternatively, the rates of learning in the perturbed dynamics (3)-(4) 
may be different. This would correspond to a situation in which learn 
draws come at different rates for the two populations. 32 It is easy to show 

29 See Taylor and Jonker (1978) and Hofbauer and Sigmund (1988). This rescaling depends 
on an assumption that the distribution of the aspiration level is the same for the two players. 

30 Samuelson and Zhang (1992) examine an analogous dynamic, with the random choices 
interpreted as errors in passing strategies (or genes) from one generation to the next. 

31 One might, for example, make the speed of learning endogenous by linking it to the 
payoff magnitudes involved, just  as we have done with noise levels. 

32 Again, these rates might be linked to payoff differences. 
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that changing the rate at which learning proceeds is equivalent to rescaling 
payoffs (i.e., multiplying by a constant) and noise levels. 33 As the relative 
rate at which learning procees for population II increases, we are again 
more likely to observe outcomes that are not subgame-perfect. 

7. CONCLUSION 

To the question of whether the subgame-perfect equilibrium should be 
regarded as the one and only game-theoretic prediction for the Ultimatum 
Game, we hope that we have provided a convincing and firmly negative 
answer. But what distinguishes our model from other theories of equilib- 
rium selection in the long run, notably fairness theories? Neither our 
theory nor fairness theories are open to straightforward refutation, since 
both leave an apologist with ample room for maneuver in explaining the 
data. In particular, our theory requires tailoring the initial conditions and 
the noise that perturbes the dynamics to the experimental environment. 
We hope that our models will not have to be altered radically in moving 
between environments, as seems to be necessary with fairness models. 
However, the final word on these questions will have to await further 
research on a variety of other games. We hope to report such results 
soon .  
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