You are given four cards with a number on one side and a letter on the other. You can only see one side of each card.

Which card(s) do you have to turn over in order to fully test the following rule:

If there is a vowel on one side of the card, then there is an even number on the other side.

You are given four cards with a drink on one side and an age on the other. You can only see one side of each card.

Which card(s) do you have to turn over in order to fully test the following rule:

If you are drinking alcohol, then you must be over 21 .

PROOFS WITH CONDITIONALS

Monday, 20 September

RULES FOR CONDITIONALS

- \rightarrow Elimination: from $\mathrm{P} \rightarrow \mathrm{Q}$ and P , we can infer Q .

$$
\begin{aligned}
& \text { I.P } \rightarrow \text { Q } \\
& \text { 2. P } \\
& \text { 3. Q }
\end{aligned} \rightarrow \text { Elim: I,2 }
$$

- \leftrightarrow Elimination: from $P \leftrightarrow Q$ and P / Q, we can infer Q / P.

$$
\begin{aligned}
& \text { I.P } \leftrightarrow Q \mathrm{Q} \\
& \text { 2. } \mathrm{Q} \\
& \text { 3.P }
\end{aligned} \leftrightarrow \text { Elim: I,2 }
$$

Rules for Conditionals

RULES FOR CONDITIONALS

$$
\begin{aligned}
& \text { I.P } \rightarrow \mathrm{Q} \\
& \text { 2.P }
\end{aligned}
$$

$$
\text { 3. Q } \quad \rightarrow \text { Elim: } 1,2
$$

Modus Ponens

$$
\begin{aligned}
& \text { I. } P \rightarrow Q \\
& \text { 2. } \neg Q \\
& \text { 3. } \neg P \text { VALID, but not } \rightarrow E
\end{aligned}
$$

EXAMPLE

Example:

I. $P \vee Q$	
2. $\mathrm{P} \rightarrow \mathrm{R}$	
3. $\mathrm{Q} \leftrightarrow \neg \mathrm{S}$	
4. $S \vee R$	
5. P	for \vee Elim
R	
Q	for vElim
R	
R	\checkmark Elim

EXAMPLE

Example:

I. $P \vee Q$
2. $P \rightarrow R$
3. $\mathrm{Q} \leftrightarrow \neg \mathrm{S}$
$4 . S \vee R$

5. P	for vElim
6. R	\rightarrow Elim 2,5

7. Q for vElim
8. ᄀS ↔Elim 3,7

R by disjunctive syllogism 4,8
R VElim I,5-...

Rules Using Contradictions

Example: Disjunctive Syllogism

for \vee Elim
\perp Intro 2,3
\perp Elim 4
for \vee Elim
\vee Elim I,3-5,6-6

Rules Using Contradictions

Example: Disjunctive Syllogism

$P \vee Q$ $\neg P$	$\begin{aligned} & 1 . S \vee R \\ & \text { 2. } \neg S \end{aligned}$	
Q	3. S	for \vee Elim
	4. \perp	\perp Intro 2,3
	5. R	\perp Elim 4
	6. R	for \vee Elim
	7. R	\checkmark Elim I,3-5,

EXAMPLE

for \vee Elim
\perp Intro 2,3
\perp Elim 4
for \vee Elim
\vee Elim I,3-5,6-6

EXAMPLE

for \vee Elim

 \perp Intro 8,9\perp Elim 10
for \vee Elim
$\vee \operatorname{Elim} 4,9-1$ I, I2-I3

FORMAL PROOF RULES

- \rightarrow Introduction

From a proof from P to Q, we can infer $P \rightarrow Q$.

$$
\left\lvert\, \begin{aligned}
& \left\lvert\, \begin{array}{l}
\text { I.P } \\
\ldots \\
\text { j.Q } \\
\text { k.P }
\end{array} \rightarrow Q \quad \rightarrow\right. \text { Intro: I-j }
\end{aligned}\right.
$$

This rule is often known as Conditional Proof

CHAIN ARGUMENT

Example:

$$
\left\lvert\, \begin{aligned}
& P \rightarrow Q \\
& Q \rightarrow R \\
& P \rightarrow R
\end{aligned}\right.
$$

$$
\begin{aligned}
& \text { I. P } \rightarrow \text { Q } \\
& \text { 2. } \mathrm{Q} \rightarrow \mathrm{R} \\
& \text { 3. } P \quad \text { for } \rightarrow \text { Intro } \\
& \text { 4. } \mathrm{Q} \\
& \text { 5. R } \\
& \rightarrow \text { Elim 2,4 } \\
& \text { 6. } \mathrm{P} \rightarrow \mathrm{R} \rightarrow \text { Intro 3-5 }
\end{aligned}
$$

TRANSITIVITY OF \rightarrow

Example:

$$
\begin{aligned}
& P \rightarrow Q \\
& \hline(Q \rightarrow R) \rightarrow(P \rightarrow R)
\end{aligned}
$$

$$
\begin{aligned}
& \text { I.P } \rightarrow Q \\
& \begin{array}{l}
\text { 2. } Q \rightarrow R
\end{array} \quad \text { for } \rightarrow \text { Intro } \\
& \left\lvert\, \begin{array}{ll}
\text { 3. } P & \text { for } \rightarrow \text { Intro } \\
\text { 4. } Q & \rightarrow \text { Elim I,3 } \\
R & \rightarrow \text { Intro } \\
P \rightarrow R & \rightarrow \text { Intro }
\end{array}\right. \\
& (Q \rightarrow R) \rightarrow(P \rightarrow R) \quad
\end{aligned}
$$

TRANSITIVITY OF \rightarrow

Example:

$$
\begin{aligned}
& P \rightarrow Q \\
& (Q \rightarrow R) \rightarrow(P \rightarrow R)
\end{aligned}
$$

$$
\begin{aligned}
& \text { I. } P \rightarrow Q \\
& \begin{array}{ll}
\text { 2. } Q \rightarrow R & \text { for } \rightarrow \text { Intro } \\
\text { (3. } P & \text { for } \rightarrow \text { Intro } \\
\text { 4. } Q & \rightarrow \text { Elim I,3 } \\
\text { 5. } R & \rightarrow \text { Elim 2,4 } \\
\text { 6. } P \rightarrow R & \rightarrow \text { Intro 3-5 }
\end{array} \\
& \text { 7. }(Q \rightarrow R) \rightarrow(P \rightarrow R) \rightarrow \text { Intro 2-6 }
\end{aligned}
$$

Notice the Structure

$$
\begin{aligned}
& \text { I. } P \rightarrow Q \\
& \text { 2. } Q \rightarrow R \\
& \text { 3. } P \\
& \text { 5. R } \\
& \text { 6. } \mathrm{P} \rightarrow \mathrm{R} \quad \rightarrow \text { Intro 3-5 } \\
& \text { for } \rightarrow \text { Intro } \\
& \rightarrow \text { Elim I,3 } \\
& \rightarrow \text { Elim 2,4 } \\
& \rightarrow \text { Intro 3-5 } \\
& \text { I. P } \rightarrow \mathrm{Q} \\
& \text { 2. } Q \rightarrow R \quad \text { for } \rightarrow \text { Intro } \\
& \text { for } \rightarrow \text { Intro } \\
& \rightarrow \text { Elim 1,3 } \\
& \rightarrow \text { Elim 2,4 } \\
& \rightarrow \text { Intro 3-5 } \\
& \text { 7. }(Q \rightarrow R) \rightarrow(P \rightarrow R) \\
& \rightarrow \text { Intro 2-6 }
\end{aligned}
$$

SUBPROOFS AND PROOFS

$$
\begin{aligned}
& P \rightarrow Q \\
& Q \rightarrow R \\
& P \rightarrow R
\end{aligned}
$$

$$
\mathrm{P} \rightarrow \mathrm{Q}
$$

$$
(\mathrm{Q} \rightarrow \mathrm{R}) \rightarrow(\mathrm{P} \rightarrow \mathrm{R})
$$

$$
(\mathrm{P} \rightarrow \mathrm{Q}) \rightarrow[(\mathrm{Q} \rightarrow \mathrm{R}) \rightarrow(\mathrm{P} \rightarrow \mathrm{R})]
$$

MODUS TOLLENS

Example:

$$
\left\lvert\, \begin{aligned}
& P \rightarrow Q \\
& \neg Q \\
& \neg \neg P
\end{aligned}\right.
$$

$$
\begin{aligned}
& \text { I. } \mathrm{P} \rightarrow \mathrm{Q} \\
& \text { 2. } \neg \mathrm{Q} \\
& \begin{array}{ll}
\text { 3. } \mathrm{P} & \text { for } \neg \text { Intro } \\
\hline \begin{array}{l}
\text { 4. } \mathrm{Q}
\end{array} & \rightarrow \text { Elim I,3 } \\
\text { 5. } \perp & \perp \text { Intro 2,4 } \\
\text { 6. } \neg \mathrm{P} & \neg \text { Intro 3-5 }
\end{array}
\end{aligned}
$$

CONTRAPOSITION

Example:

$$
\left\lvert\, \begin{aligned}
& \mathrm{P} \rightarrow \mathrm{Q} \\
& \neg \mathrm{Q} \rightarrow \neg \mathrm{P}
\end{aligned}\right.
$$

I. P \rightarrow Q	
2. $\neg \mathrm{Q}$	for \rightarrow Intro
3. P	for \neg Intro
4. Q	\rightarrow Elim 1,3
5. \perp	\perp Intro 2,4
6. $\rightarrow P$	\neg Intro 3-5
7. $\neg \mathrm{Q} \rightarrow \neg \mathrm{P}$	\rightarrow Intro 2-6

FORMAL PROOF RULES

- \leftrightarrow Introduction: from a proof from P to Q and a proof from Q to P , we can infer $\mathrm{P} \leftrightarrow \mathrm{Q}$.

```
I.P
j. Q
k. Q
    m.P
k.P\leftrightarrowQ Q & Intro: I-j, k-m
```


BICONDITIONALS

Example:

$$
\left\lvert\, \begin{aligned}
& P \leftrightarrow Q \\
& Q \leftrightarrow R \\
& P \leftrightarrow R
\end{aligned}\right.
$$

I. $\mathrm{P} \leftrightarrow \mathrm{Q}$
2. $\mathrm{Q} \leftrightarrow \mathrm{R}$
3. P for \leftrightarrow Intro
\rightarrow Elim I,3
\rightarrow Elim 2,4

6. R	for \leftrightarrow Intro
7. Q	\rightarrow Elim I,3
8. P	\rightarrow Elim 2,4
$P \leftrightarrow R$	\leftrightarrow Intro 3-5, 6-8

