
Phil 5312 
Fall 2024 
 
Assignment 7: 
You may do this homework assignment in lieu of a final paper if you wish. It will be due 
Friday morning, December 13th.  
 
Choose any two parts of this homework and do every problem in each of those two parts.  
 
Part 1: Probability problems 
Do the following problems in Titelbaum, Foundations of Bayesian Epistemology. It is 
likely you will need to read at least portions of the chapters.  
 
2.5, 2.7, 2.9, 3.1, 3.3, 3.5, 3.7 
 
In addition, do the following two problems: 
 
1) Assume that Pr is a probability function that satisfies the following:  
P[E] = 0.55 
P[F] = 0.5 
P[¬G] = 0.45 
P[E & F]=0.3 
P[E & ¬G]=0.25 P[F & ¬G]=0.3 
P[E & F & ¬G]=0.2  
Find P[¬E & ¬F & G]. Show your work in a way that makes it clear how you could have 
done a slightly different problem. For example, if you use a Venn diagram, tell me the 
order you filled in the regions and which regions correspond to the answer. If you use the 
algebraic method, just write the relevant equations, etc.).  
 
2) Define the false positive rate of a test to be the probability of getting a positive result 
given that the patient does not have the disease. The false negative rate is the probability 
of getting a negative result given that they do have it.  
 
You overhear a doctor tell her patient: “Now after the last set of tests, I told you I was 
75% sure that you had the antibody in your blood so we decided to do another test. Well, 
now I can say that I am 95% sure. After all, the test came out positive and the false 
positive rate on this test is only 10%.” Now you know that this doctor is a competent 
statistician. What can you infer about the false negative rate of the test? If the test had 
instead come out negative, how should the doctor have revised her beliefs?  
 
Part 2: Probabilities and Conditionals 
 
Reading Bennett chapter 9 may help you here. 
 
Prove that each of the following holds for any probability function P and any propositions 
A, C where P(A) > 0 (so that P(C|A) is defined) 



 
1) P(C|A) ≤ P(A ⊃ C). 
2a) if P(A) = 1, then P(C|A)  =  P(A ⊃ C) = P(C)  
2b) P(C|A) = 1 if and only if P(A ⊃ C) = 1 
2c) P(C|A)  =  P(A ⊃ C) entails that one of these two cases above obtains (that is, entails 
that either P(A) = 1 or P(A ⊃ C) = 1) 
 
In problems 3-7 below, for a given material conditional A ⊃ C, call P(C|A) ‘the 
corresponding conditional probability’ 
 
For each of arguments 3-7, say whether they are deductively valid. Now replace any 
material conditionals with the corresponding conditional probability. Now assume that 
the probability of each of the premises is 1. What is the possible range of the probability 
of the conclusion? Next, make the probability of the premises each .9. Now what is the 
possible range of the probability of the conclusion? Is the argument probabilistically 
valid? 
 
3) A ⊃ C, A  ⊢  C 
4) A ⊃ C, C  ⊢  A 
5) C ⊢ A ⊃ C 
6) A ⊃ C  ⊢ (A&B) ⊃ C 
7) A ⊃ (C&B)  ⊢ A ⊃ C 
 
Part 3: Counterfactuals 
1) In “Most Counterfactuals are False”, Alan Hájek describes a principle that he calls 
“The  Poisoning Principle”: 
 
PP: The disjunctive-antecedent counterfactual  

 (D1 or D2 or … or Dn ) > C is false  
if any of the individual-disjunct counterfactuals  

 Di  > C is false. 
 
Bennett talks about the principle SDA (Simplification of disjunctive antecedents): 
 
SDA: (AÚB) > C   ⊢  (A > C) Ù (B > C) 
 
Another important principle is antecedent strengthening: 
 
AS: A > C   ⊢  (A Ù B) > C 
 
Show that these three principles are all equivalent to each other (by a chain of 
equivalences).  
 
You may assume that if one proposition is logically equivalent to another, you can freely 
substitute it in a formula and the truth-value will be the same. For example, AÚB is 



equivalent to BÚA and so anything that is true with ‘AÚB’ in it will also be true if we 
replace ‘AÚB’ with ‘BÚA’. 
 
Hint: A is logically equivalent to (AÙB) Ú (AÙ¬ B) 
 
2) Show that all three principles are invalid in the Lewis/Stalnaker possible worlds 
semantics (since they are equivalent, show any one is invalid). 
 
3) Show that all three principles are valid if the counterfactual is really a strict conditional 
- that is, if A > C  means □(A ⊃	C).	(Showing	one	is	valid	in	modal	logic	K	would	
suffice).		
	
4)	This	might	seem	like	a	reasonable	view	of	the	counterfactual:	A	>	C	is	true	when	
at	the	nearest	A	world(s)	the	probability	of	C	is	very	high.	Take	‘very	high’	to	mean		
≥	2/3	here.	One	argument	against	this	kind	of	analysis	is	that	it	would	violate	the	
principle	that	A	>	B	together	with	A	>	C	entails	A	>	(BÙC).	Explain	why	this	analysis	
would	violate	this	principle.	Also	explain	why	the	number	2/3	here	is	arbitrary	in	
the	sense	that	any	probability	<	1	would	have	exactly	the	same	problem.	
	
5)	One key difference between Lewis’s and Stalnaker’s semantics is that Stalnaker 
assumes that there is a unique ‘closest’ A-world (if there is one at all). For many 
inferences, this does not make a difference. But it does for these two cases below. For 
each inference, explain whether they are valid or not on the Lewis/Stalnaker semantics 
and then give an argument that the inference is either really valid or really invalid (an 
example would probably be a good way to do this).  
 
5a. A > (B Ú C), ¬ (A > B) therefore A > C  
5b. ∀x ¬ (A > Fx) therefore A > ∀x¬ Fx  
 
 
6)	Assume	the	basic	Lewisian	semantics	for	counterfactuals:	A>C	is	true	iff	there	is	
no	possible	world	where	A	is	true	or	there	is	a	possible	world	where	AÙC	is	true	
which	is	closer	to	the	actual	world	than	any	A	Ù¬ C	world.	This	leaves	‘closer’	
undefined.	Each	of	1-5	is	a	proposed	analysis	of	‘closer’	which	Lewis	would	reject.	
Give	an	example	counterfactual	which	you	think	is	clearly	true	(or	clearly	false),	but	
which	the	proposed	analysis	would	count	as	false	(or	true)	and	explain	why	the	
analysis	does	so.	Or	alternatively,	give	some	other	argument	for	why	this	is	an	
unacceptable	analysis.	
	
6.1)	If	two	worlds	both	have	human	beings	in	them	then	they	are	automatically	
closer	to	each	other	than	a	world	that	does	and	a	world	that	doesn’t.	
	
6.2)	Assuming	that	the	relevant	worlds	all	have	exactly	the	same	people	in	them,	any	
two	worlds	where	everybody	lives	to	be	exactly	the	same	age	in	the	two	worlds	(so	
Joel	dies	at	the	same	age	in	both,	Bob	dies	at	the	same	age	in	both,	etc.)	are	
automatically	closer	to	each	other	than	worlds	that	aren’t	like	this.	



	
6.3)	A	world	w	is	closer	to	y	than	to	z	iff	they	share	more	facts	in	common	
	
6.4)	Any	two	worlds	which	share	the	exact	same	past	(before	the	time	when	A	
occurred)	are	closer	to	each	other	than	either	is	to	a	world	which	doesn’t	share	the	
exact	same	past.	
	
6.5)	Any	worlds	which	share	exactly	the	same	causal	laws	(laws	of	nature)	are	
closer	to	each	other	than	any	two	that	don’t.	
 
Part 4: Modal logic  
Using MacFarlane's setup, here is a complete set of rules for Modal Logic K: 
propositional logic rules, MNE, □Intro, Modal Reit - T (yes, it is poorly named). 
 
Give a natural deduction showing that the following are valid in K: 
 
1) □(P⊃Q)	⊢	◊(P	Ù	R)	⊃	◊(Q	Ù	R)	
2)	◊P	⊢	◊(Q	Ú ¬Q) 
3)	⊢	◊(P⊃Q)	≡	(□P ⊃	◊Q) 
	
For	each	of	these	sentences,	determine	whether	or	not	they	are	logical	truths	in	T,	
S4,	and	S5.	If	logical	truths,	give	a	deduction.	If	not,	give	a	countermodel.	
	
4) P	⊃	(◊□□P ⊃ □P) 
5) □(□P Ú □Q) ≡	(□P Ú □Q) 
6) ◊¬P Ú ◊¬Q Ú ◊(P	Ù	Q)	
	
7)	Give an argument that there are no logical truths of K of the form □◊𝜙.	
	
8)	Give	an	argument	that	if	𝜙	⊃	ψ	is	a	logical	truth	of	K,	then	□𝜙	⊃	□ψ		will	also	be	a	
logical	truth	in	K.	
	
Correspondence	of	axioms	and	frames:	
Recall	that	a	frame	is	a	non-empty	set	of	worlds	with	an	accessibility	relation	
between	worlds.	So	it	part	of	a	model	that	doesn't	have	any	truth	value	assignments	
to	variables.	A	formula	is	said	to	be	valid	on	a	frame	if	will	turn	out	true	at	every	
world	in	that	frame	regardless	of	the	truth-value	assignment	to	the	atomic	
sentences.		
	
A	formula	is	said	to	correspond	to	a	condition	on	frames	if	it	is	valid	on	all	and	only	
frames	that	satisfy	that	condition.	For	example,	□P ⊃ P corresponds to reflexivity 
("wRww) because if every world can see itself in a given frame then □P ⊃ P will be true 
at every world and if any world cannot see itself, then it is possible to construct a model 
where □P ⊃ P turns out false at a world (pick a world that doesn't see itself, make P false 
there and make P true everywhere else).		



Some	of	the	more	commonly	studied	frame	conditions	are	listed	in	section	8	here:	
https://plato.stanford.edu/entries/logic-modal/	
	
One	condition	that	Garson	calls	"functional"	is	the	frame	condition	"w"v"u	(Rwv	Ù	
Rwu)	⊃	v	=	u).	In	other	words,	each	world	can	see	at	most	one	world.		
	
9)	Prove	that	◊P	⊃ □P is valid on a frame iff that frame satisfies this "functional" 
condition. (So first assume every world can see at most one world and prove the formula 
will be true everywhere and next assume the frame doesn't satisfy the condition and 
prove there is a countermodel). 
 
10) Another important condition is "convergence":  
"w"v"u	((Rwv	Ù	Rwu)	⊃	$x(Rvx	Ù	Rux))	
	
This	is	called	"convergence"	because	if	you	have	a	world	that	can	see	two	
possibilities,	they	will	"converge"	back	together	and	not	stay	separate.	(Think	of	
time	branching	and	then	converging	back	to	a	single	future).	
	
Prove	that	◊□P ⊃	□◊P corresponds to the convergence frame condition.	
		
HINT:	
Here	is	a	sample,	very	complete	answer.	□P ⊃ □□P corresponds to the frame condition 
"w"v"u((Rwv	Ù	Rvu)	⊃	Rwu).	Proof:	
	
Assume	that	the	frame	is	transitive.	Now	pick	an	arbitrary	world	w	in	that	frame.	
Assume	that	□P is true at w. That means that P is true at every world that w can see. 
Now for reductio, assume that □□P is false at w. That means that there is a world v where 
Rwv and where □P is false at v. That means that there is a world u where Rvu and where 
P is false at u. So now we have Rwv and Rvu and so by the frame condition (transitivity) 
we have Rwu. Since Rwu and □P is true at w, we now have P is true at u. This is a 
contradiction. So □□P must be true at w. So therefore □P ⊃ □□P is true at w. w was 
arbitrary so □P ⊃ □□P must be true at every world in the frame. This was an arbitrary 
transitive frame, so □P ⊃ □□P must be valid in every transitive frame. 
 
Now assume that the frame is NOT transitive. That means "w"v"u((Rwv	Ù	Rvu)	⊃	
Rwu)	is	false	which	means	$w$v$u(Rwv	Ù	Rvu	Ù	¬Rwu).	We	will	now	construct	a	
countermodel:	
	
Make P true at every world in the frame except for u. Now since Rwu is false and P is 
true everywhere except u, □P will be true at w. However, we have Rvu and P is false at u, 
therefore □P is false at v. Now since Rwv and □P is false at v, we have □□P is false at w. 
Therefore □P is true at w and □□P is false at w so □P ⊃ □□P is false at w. So □P ⊃ □□P 
is not valid in this particular frame. This frame was totally arbitrary (except that it didn't 
satisfy transitivity) so therefore □P ⊃ □□P must not be valid in any frame that is not 
transitive. 


